

Getech, Kitson House, Elmete Hall, Elmete Lane, Leeds LS8 2LJ, UK Getech Inc., 3000 Wilcrest Dr. Suite 155, Houston, TX 77042, USA UK. +44 113 322 2200 USA. +1 713 979 9900 info@getech.com

www.getech.com

Table of Contents

Executive Summary	6
1. Introduction to General Circulation Models	9
2. Coupled Ocean-Atmosphere HadCM3L Model	
2.1. HadCM3L Model	
2.2. Boundary Conditions	
2.3. Timeslices/Variables (NetCDFs)	
2.3.1. Timeslices	14
2.3.2. Atmospheric Variables	
2.3.3. Ocean Variables	
Sea Ice Thickness	
2.3.4. Storm Variables	
2.3.5. Surface Variables	
Köppen Classification	
3. Getech Conversion Methods	
4. Mxd Format	
5. References	
Appendix 1	60
A1. Additional Variables	60
A1.1. Atmosphere	60

A1.2. Ocean	
A1.3. Sediments	
A1.4. Surface/Vegetation	
A1.5. Storms	

List of Figures

Figure 1.1: A schematic representation of the elements of a climate model. This shows the division of the earth system into a series of grid cells	10
Table 2.1: Stage and netCDF simulation name	14
Figure 2.2: Legend used for the Full Köppen Scheme4	14
Figure 2.3: Legend used for the Biome4 Model4	45
Figure 3.1: Flow chart showing the process used to create the ArcGIS [™] files for the mxd4	18

List of Tables

Table 4.1a: Variables included within the project mxd5	52
Table 4.1c: Variables included within the project mxd continued	54
Table 4.1d: Variables included within the project mxd continued	55
Table 4.2: Water depth levels used within mxd	56

Executive Summary

Earth systems modelling provides powerful tools for predicting depositional systems through time that can help minimise exploration risks in New Ventures operations. As part of the Earth system modelling module of the *Globe* exploration platform, Getech has developed an extensive series of Stage-level digital atlases for the Jurassic using the HadCM3L coupled ocean-atmosphere General Circulation Model. These atlases are being used to develop lithofacies prediction models, including marine and terrestrial source, and reservoir facies. The results are also being used in our focussed exploration studies around the world. The models are built on Getech's global palaeogeographies (*Globe* core deliverables) and carried out by the world-leading modelling group led by Professor Paul Valdes at the University of Bristol. Model results are quantitatively tested against Getech's extensive observational databases of the Present Day and the past.

Study Aims

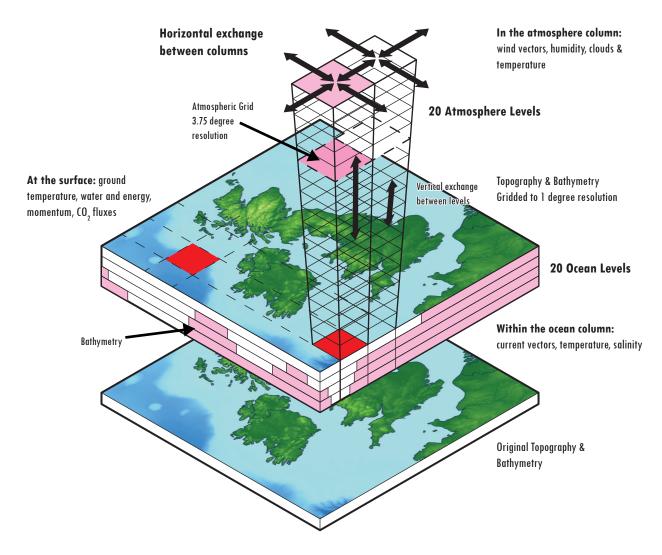
This issue of the "Atlas of Earth Systems Modelling: Jurassic Climate Model Results" provides climate model (HadCM3L) results for nine atmospheric, seven oceanic, one storm and three surface variables over geological time. The issue also covers the Jurassic in 11 Stage-level timeslices. The variables provided are surface temperature, atmospheric temperature at 1.5 m, atmospheric circulation, total precipitation, total evaporation, precipitation-evaporation, runoff, surface air pressure, snow depth at surface, ocean circulation (for nine depth levels), ocean salinity (for nine depth levels), ocean temperature (for nine depth levels), upwelling (for nine depth levels), mixed layer depth, sea ice concentration, sea ice thickness, eddy kinetic energy, soil moisture (four soil levels combined to produce total soil moisture), and vegetation which has two categories: biomes (Biome4 model results) and Köppen classification. All atmospheric and storms results include mean annual, seasonal and monthly values, as do the results for soil moisture, sea ice thickness, sea ice concentration and mixed layer depth. The ocean results with multiple depth levels are provided as mean annual and seasonal values only (ocean circulation, ocean salinity, ocean temperature and upwelling). The vegetation layers are mean annual values only.

Report Structure

The report is split into four parts: 1) Introduction to General Circulation Models (Chapter 1), which provides a brief overview of their definition and practical usage; 2) Coupled Ocean-Atmosphere HadCM3L Model (Chapter 2), which details the particular General Circulation Model used in this study, including the boundary conditions that were set and the variables used; 3) Getech Conversion Methods (Chapter 3), which outlines the processing used to convert the original NetCDF files, provided by the University of Bristol, into ArcGIS[™] format and 4) the format of the final delivered mxd (Chapter 4). The references used within this report are detailed in Chapter 5. An Appendix (Appendix 1) provides details of additional variables that are available upon request.

CHAPTER 1

Introduction to General Circulation Models


1. Introduction to General Circulation Models

General Circulation Models (GCMs) are sophisticated three-dimensional models of the atmosphere and oceans that, although computationally expensive, are used to provide information for areas where no or limited data are available. The models can also be used to test the sensitivity of the climate system to forcing (DeConto et al., 1999), e.g. increasing CO₂ levels or changes to palaeogeography. These models use the fundamental physics (e.g. Newton's Laws of Motion, Thermodynamics) governing the climate as a starting point to provide numerical representations of the Earth's climate system. GCMs now include parameters such as plant physiology, soil heat, ice formation and water dynamics.

Atmospheric GCMs divide the Earth into a grid extending vertically into the atmosphere and ocean GCMs extend down into the ocean (see Figure 1.1); both grids typically extend from 10 to 20 levels (DeConto et al., 1999). The atmospheric columns include wind vectors, humidity, clouds, temperature and height with vertical exchange between levels and horizontal exchange between columns (see Figure 1.1). The oceans include current vectors, temperature and salinity with vertical and horizontal exchange between layers of momentum, heat and salts by diffusion, convection and upwelling, and horizontal exchange by diffusion and advection (see Figure 1.1). Coupled ocean-atmosphere GCMs are the most complex type of GCM. In these coupled models, the Atmospheric GCM is coupled to the Ocean GCM by surface heat balance, wind stress and freshwater flux. This coupling is important as the oceans play a role in regulating the Earth's energy budget through storage and transfer of energy (DeConto et al., 1999). Although these are the most computationally expensive model type, they also provide the most realistic representation of the Earth's systems.

A key factor in GCMs is the input palaeogeography model used, which has been shown in sensitivity tests to play an important role in ocean circulation and heat transport as well as global climate (DeConto et al., 1999). In all of the variable runs carried out for this study, Getech's global palaeogeographies (version 1.0) were used as a template for the individual timeslices. Also included are the modelled vegetation cover and other surface characteristics such as snow cover, soil water and carbon storage present for each surface grid box.

Figure 1.1: A schematic representation of the elements of a climate model. This shows the division of the earth system into a series of grid cells.

CHAPTER 2

Coupled Ocean-Atmosphere HadCM3L Model

Coupled Ocean-Atmosphere HadCM3L Model HadCM3L Model

The climate, ocean and vegetation model results are based on the HadCM3L coupled oceanatmosphere model (Unified Model Vn4.5 or UM), developed by the Hadley Centre of the UK Met Office. The model simulations were run on Getech's behalf by Dr Claire Loptson at the University of Bristol. This model is used for weather and future climate prediction and performs favourably when compared to other climate models, as evaluated by the Coupled Model Intercomparison Project, CMIP3. The model is run in three phases: during Phase I it is allowed to run for 50 model years with low CO_2 and no dynamic vegetation for stability reasons; phase II is ~500 years of spin up with the appropriate CO_2 value for the Stage being modelled, and modelpredicted vegetation which evolves through the simulation and, finally, in Phase III the model is run for a further ~100 years with lakes turned on. The full suite of model outputs is turned on, and averages are calculated over the last ~40 years of the simulation. The whole modelling process takes 2–3 months of real time. The model is configured to output daily, monthly, seasonal and annual results for approximately 100 different variables for 20 levels in the ocean and 19 levels in the atmosphere, with a horizontal resolution of 2.5° of latitude by 3.75° of longitude.

It should be noted that problems were encountered with running the HadCM3L model for the Oxfordian Stage. When the results were received from Bristol University, it was noted that anomalously high values of ocean circulation vectors and ocean salinity were present in the Arctic region. Upon investigation it was found that the basemaps had some peninsulas in the Arctic region with small inlets, below the resolution the model can resolve. This would normally have made the model unstable; thus leading to it crashing and alerting the modellers to a problem, but, in this instance, the model continued to run, producing the very high values. The land sea mask was modified to remove the inlets that were causing the problem. It was then found that adjustments were required to the maximum orographic height at both poles to force the model to run; the height was capped at 2,500 m in both poles and at 1,500 m in the highest latitude five gridcells of Antarctica. This makes the height in these regions lower than in the Kimmeridgian and Callovian Stages to either side of the Oxfordian. Drs Loptson and Lunt are currently working on determining what has caused this problem, but, as yet, there is no geographical feature identified that could have caused the model to become unstable.

2.2 Boundary Conditions

The boundary conditions set for the model are the Getech *Globe* Palaeogeography Vol 3, v1.0 (2013) basemaps, the atmospheric CO₂, and solar constant (Gough, 1981). All other variables are calculated internally by the model according to the fundamental fluid dynamics and physics of the atmosphere and ocean, and the biology of the land surface. In contrast to earlier models, HadCM3L does not require flux correction to maintain an acceptable Present Day simulation, and so is fully appropriate for simulating past climates.

The basic model is coupled to the Met Office Surface Exchange Scheme 2 (MOSES 2) tiled land-surface model that calculates the surface CO_2 fluxes associated with photosynthesis and plant respiration (Cox, 2001). MOSES 2 is designed to complement the TRIFFID (Top-down Representation of Interactive Foliage and Flora Including Dynamics) global vegetation dynamic model (Cox, 2001) also used in this set up. TRIFFID simulates varieties of trees, grasses, shrubs, soil, inland water, and ice (Cox, 2001).

The atmospheric composition is assumed to have been constant during the Jurassic; therefore the model simulations use CO_2 levels set at 1,120 ppmv. The methane (CH₄) was set at 760 ppbv and Nitrus Oxide (N₂O) at 270 ppbv for all runs. The climatologies were calculated over the final ~40 years of the simulations.

2.3 Timeslices/Variables (NetCDFs)

This section contains details of the timeslices and variables that were provided to Getech in netCDF file format and used for this study.

2.3.1 Timeslices

This study focuses on the Jurassic and provides one timeslice per Stage (Table 2.1 contains a list of the timeslices that were examined for the project).

Stage	NetCDF Code
Tithonian	tdssk
Kimmeridgian	tdssj
Oxfordian	tdssr
Callovian	tdssh
Bathonian	tdssg
Bajoician	tdssf
Aalenian	tdsse
Toarcian	tdssd
Pliensbachian	tdssc
Sinemurian	tdssb
Hettangian	tdssa

Table 2.1:Stage and netCDF simulation name.

The set of variables detailed below (sections 2.3.2 to 2.3.5) were produced for each of the timeslices in Table 2.1. Where stated, the units used in the netCDF files from the University of Bristol have been converted to standard, more easily accessible units in the ArcGISTM mxd, e.g. kg m² per 30 minutes to mm/day.

2.3.2 Atmospheric Variables

Surface Temperature

This is the temperature at the Earth's surface in Kelvin. This was converted to degrees Centigrade for the final mxd.

Feature Raster Dataset	Name:	t_srf (suffixed with month, season or mean annual, e.gjan (January); _djf (December, January, February) or _mat (Mean Annual))
Mxd Layers Created:	Monthly:	January
		February
		March
		April
		May
		June
		July
		August
		September
		October
		November
		December
	Seasonal:	December, January, February
		March, April, May
		June, July, August
		September, October, November
	Annual:	Mean Annual Surface Temperature

Atmospheric Temperature at 1.5 m

This is the temperature in Kelvin of the atmosphere at 1.5 m above the Earth's surface, but it was converted to degrees Centigrade for the final mxd. This represents the temperature experienced by the faunal and floral climate proxies used for verification of the model. This section includes the Cold Month Mean (CMM) at 1.5 m, which is the mean value of the coldest month in each individual grid cell, and the Warm Month Mean (WMM) at 1.5 m, which is the mean value of the warmest month for each individual grid cell. The coldest and warmest month will vary for each grid cell depending on its location, e.g. December is cold in the Northern Hemisphere but hot in the Southern Hemisphere.

Feature Raster Dataset	Names:	t_1_5m, cmm, wmm (suffixed with month, season or mean annual, e.gjan (January); _djf (December, January, February) or _mat (Mean Annual))
Mxd Layers Created:	Monthly:	January
		February
		March
		April
		May
		June
		July
		August
		September
		October
		November
		December

Seasonal:	December, January, February	
	March, April, May	
	June, July, August	
	September, October, November	
Annual:	Mean Annual Surface Temperature at 1.5 m	
Additional:	Cold Month Mean	
	Warm Month Mean	

Atmospheric Circulation

We have combined the meridional (v) and zonal (u) components of the wind vector supplied by the University of Bristol to generate an azimuth (wind direction) and velocity, which is then used in surface wind coverage. This is in units of metres per second.

Feature Class Names:		cur_uv_mm_10m (suffixed with the month, season or mean annual, e.gjan (January); _djf (December, January, February) or _ann (Mean Annual))
Mxd Layers Created:	Monthly:	January
		February
		March
		April
		May
		June
		July
		August
		September
		October
		November
		December
	Seasonal:	December, January, February
		March, April, May
		June, July, August
		September, October, November
	Annual:	Mean Annual Atmospheric Circulation

Total Precipitation

This is the amount of water precipitation (and snow as water equivalent) reaching the Earth's surface for each grid cell in kilograms per metre squared per 30 minutes. This was converted to millimetres per day for the mxd. The model generates precipitation in a grid cell once the cell reaches the saturation vapour pressure (i.e. the pressure exerted by the water vapour when the rate of evaporation equals the rate of condensation). In general, moisture will fall as rain rather than snow if the temperature of the lowest atmospheric level is greater than 273 Kelvin (-0.15 °C).

Feature Raster Dataset	Name:	prec_srf (suffixed with month, season or mean annual, e.gjan (January); _djf (December, January, February) or _map (Mean Annual))
Mxd Layers Created:	Monthly:	January
		February
		March
		April
		May
		June
		July
		August
		September
		October
		November
		December
	Seasonal:	December, January, February
		March, April, May
		June, July, August
		September, October, November
	Annual:	Mean Annual Precipitation

Total Evaporation

Evaporation is the change in state of water from a liquid to a gas (water vapour). This requires the absorption of energy (as latent heat) which can then be transported with the air parcel. The rate of evaporation depends on the temperature and the availability of moisture to evaporate. We combined the values of evaporation from the surface (in kilograms per metre squared per 30 minutes), canopy evaporation (in kilograms per metre squared per 30 minutes), sublimation from the surface (in kilograms per metre squared per 30 minutes) and evaporation from the sea (in kilograms per metre squared per second) in order to produce total monthly and seasonal evaporation. All values were converted to millimetres per day for the mxd. The Mean Annual Evaporation (MAE) was provided in a separate netCDF File, and was given in millimetres per day.

Feature Raster Dataset Name:	tot_evap (suffixed with month, season or mean annual, e.gjan (January); _djf (December, January, February) or _ann (Mean Annual))
Mxd Layers Created: Monthly:	January
	February
	March
	April
	May
	June
	July
	August
	September
	October
	November
	December

Seasonal:	December, January, February		
	March, April, May		
	June, July, August		
	September, October, November		
Annual:	Mean Annual Evaporation		

Precipitation-Evaporation

This is the average total precipitation minus the average total evaporation, which provides a measure of aridity. Values can be positive or negative, and were initially provided in the units detailed above in the sections on Total Precipitation and Total Evaporation, but these were converted to millimetres per day for the mxd. The seasonal values were calculated from the average Total Precipitation and average Total Evaporation values, but the Mean Annual Precipitation-Evaporation (in millimetres per day) was provided as a separate netCDF file.

Feature Raster Dataset Name:		pminuse (suffixed with month, season or mean annual, e.g. _jan (January); _djf (December, January, February) or _ann (Mean Annual))
Mxd Layers Created:	Monthly:	January
		February
		March
		April
		May
		June
		July
		August
		September
		October
		November
		December
	Seasonal:	December, January, February
		March, April, May
		June, July, August
		September, October, November
	Annual:	Mean Annual Precipitation-Evaporation

Total Runoff

We have combined the Slow Runoff (amount of excess water when soil levels 2–4 (10–15 cm) are all saturated) and Fast Runoff (amount of excess water when soil level 1 (0–10 cm) is saturated) netCDF components supplied by the University of Bristol to generate the Total Runoff. Fast runoff results after a sudden downpour or storm in which the rate of inflow of precipitation into layer 1 exceeds the outflow through gravitational leakage, etc. If the precipitation persists, then layer 1 will ultimately fill and spill out as runoff. This sort of runoff will be far more important for redistributing sediment on the surface than slow runoff. In areas of highly seasonal rainfall it might be represented as flash flooding. Both fast and slow runoffs were provided in kilograms per metre squared per 30 minutes, but we later converted these to millimetres per day for the mxd. The colour scheme on the data layers was chosen to maximise detail, and it should be assumed that the maximum is 16 mm/day or greater.

Feature Raster Dataset Name:	runoff_tot (suffixed with month, season or mean annual, e.gjan (January); _djf (December, January, February) or _ann (Mean Annual))
Mxd Layers Created: Monthly:	January
	February
	March
	April
	May
	June
	July
	August
	September
	October
	November
	December

Seasonal:	December, January, February		
	March, April, May		
	June, July, August		
	September, October, November		
Annual:	Mean Annual Total Runoff		

Surface Air Pressure

This is the pressure in Pascals that is exerted on the Earth's surface by the atmosphere. This was converted to hectopascals for the mxd.

Feature Raster Dataset Name:		p_surf (suffixed with month, season or mean annual, e.gjan (January); _djf (December, January, February) or _masp (Mean Annual))
Mxd Layers Created:	Monthly:	January
		February
		March
		April
		May
		June
		July
		August
		September
		October
		November
		December
	Seasonal:	December, January, February
		March, April, May
		June, July, August
		September, October, November
	Annual:	Mean Annual Surface Pressure

Snow Depth at Surface

The amount of snow expressed as water equivalent. Precipitation is considered to fall as snow when the temperature of the lowest atmospheric level falls below 273 Kelvin (-0.15 °C). This is in kilograms per metre squared per 30 minutes but was converted to mm/day for the mxd.

Feature Raster Dataset Name:	snw_dpth (suffixed with month, season or mean annual, e.gjan (January); _djf (December, January, February) or _masd (Mean Annual))
Mxd Layers Created: Monthly	January
	February
	March
	April
	May
	June
	July
	August
	September
	October
	November
	December

Seasonal:	December, January, February		
	March, April, May		
	June, July, August		
	September, October, November		
Annual:	Mean Annual Snow Depth		

2.3.3 Ocean Variables

Ocean Circulation

We have combined the meridional (v) and zonal (u) components of the ocean current vector supplied by the University of Bristol to generate an azimuth (ocean current direction) and velocity, which is then used in the ocean current coverage. The ocean circulation is given for nine depth levels: 5 m, 47.85 m, 95.75 m, 203.7 m, 447.05 m, 995.55 m, 2,116.16 m, 2,731.45 m and 3,962.05 m. The names of these levels have been rounded for clarity (Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m and 4,000 m). The mxd shows the combined values in cm s⁻¹.

Feature Class Names:		cur_uv (suffixed by the water depth, e.gc95 for 9575 m (100 m),and with season or mean annual, e.gdjf (December, January, February) or _ann (Mean Annual))
Mxd Layers Created:	Seasonal:	December, January, February
		March, April, May
		June, July, August
		September, October, November
	Annual:	Mean Annual Ocean Circulation

Ocean Salinity

This is salinity for each ocean layer in parts per thousand ((psu-35)/1000). The ocean salinity is given for nine depth levels: 5 m, 47.85 m, 95.75 m, 2037 m, 447.05 m, 995.55 m, 2,116.16 m, 2,731.45 m and 3,962.05 m. The names of these levels have been rounded for clarity (Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m and 4,000 m). This has been converted to PSU for the mxd.

Feature Raster Dataset Name:	sl (suffixed by the water depth, e.g. sl95 for 95.75 m (100 m),
	and with season or mean annual, e.gdjf (December, January,
	February) or _ann (Mean Annual))

Mxd Layers Created:	Seasonal:	December, January, February
		March, April, May
		June, July, August
		September, October, November
	Annual:	Mean Annual Ocean Salinity

Ocean Temperature

This is ocean temperature for each ocean layer in degrees Centigrade. The ocean temperature is given for nine depth levels: 5 m, 47.85 m, 95.75 m, 2037 m, 447.05 m, 995.55 m, 2,116.16 m, 2,731.45 m and 3,962.05 m. The names of these levels have been rounded for clarity (Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m and 4,000 m).

Feature Raster Dataset Name:		t (suffixed by the water depth, e.g95 for 9575 m (100 m), and with season or mean annual, e.gdjf (December, January, February) or _ann (Mean Annual))
<i>Mxd</i> Layers Created: Seasonal:		December, January, February
		March, April, May
		June, July, August
		September, October, November
	Annual:	Mean Annual Ocean Temperature

Upwelling (Vertical Velocity)

This is the vertical velocity of the water in each grid cell within each specified ocean level. Negative values indicate downwelling; positive upwelling is given in centimetres per second. Upwelling is important for primary productivity as it brings nutrients to the surface. The ocean temperature is given for nine depth levels: 10 m, 55.5 m, 113 m, 242.6 m, 534.7 m, 1,193.2 m, 1,808.5 m, 3,039.1 m and 3,654.4 m. The names of these levels have been rounded for clarity (Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m and 4,000 m). These were converted to centimetres per day.

Feature Raster Dataset Name:

vv (suffixed by the water depth, e.g. _113 for 113m (100 m), and with season or mean annual, e.g. _djf (December, January, February) or _ann (Mean Annual))

Seasonal:	December, January, February
	March, April, May
	June, July, August
	September, October, November
Annual:	Mean Annual Upwelling

Mixed Layer Depth

The mixed layer is one in which active turbulence has produced homogenized oceanic tracers (e.g. temperature, salinity and density) above a layer of more rapid vertical changes. It is the depth in metres to the mixed layer which is a proxy for deep water formation, with increasing depth reflecting increasing down-welled water.

Feature Raster Dataset Name:		mixlyr (suffixed with month, season or mean annual, e.gjan (January); _djf (December, January, February) or _ann (Mean Annual))
Mxd Layers Created:	Monthly:	January
		February
		March
		April
		May
		June
		July
		August
		September
		October
		November
		December

Seasonal:	December, January, February		
	March, April, May		
	June, July, August		
	September, October, November		
Annual:	Mean Annual Mixed Layer Depth		

Sea Ice Concentration

This is the concentration of sea ice present; it is measured in units of fractional coverage (0-1).

Feature Raster Dataset Name:		icecon (suffixed with month, season or : e.gjan (January); _djf (December, Janu _masic (Mean Annual))	
Mxd Layers Create	d: Monthly:	January	
		February	
		March	
		April	
		May	
		June	
		July	
		August	
		September	
		October	
		November	
		December	
	Seasonal:	December, January, February	
		March, April, May	
		June, July, August	
		September, October, November	
	Annual:	Mean Annual Sea Ice Concentration	
	34		© Getech Group plc 2015

Sea Ice Thickness

This is the thickness of sea ice present; it is measured in units of metres.

Feature Raster Dataset Name:		icedpt (suffixed with month, season or r	nean annual,
		e.gjan (January); _djf (December, Janua _masit (Mean Annual))	
Mxd Layers Created:	Monthly:	January	
		February	
		March	
		April	
		May	
		June	
		July	
		August	
		September	
		October	
		November	
		December	
	Seasonal:	December, January, February	
		March, April, May	
		June, July, August	
		September, October, November	
	Annual:	Mean Annual Sea Ice Thickness	
35			© Getech Group plc 20

2.3.4 Storm Variables

Eddy Kinetic Energy

This is a proxy for storminess in the atmosphere. Eddy Kinetic Energy (EKE) records the amount of eddy-scale (10s to 100s km) energy transfer. This is of minor importance in low-latitudes, where energy transport is dominated by zonal mechanisms (Hadley atmospheric cells); however, it is of maximum importance at the mid-latitudes, where mixing of cold polar and warm tropical air creates turbulence in the atmosphere. The results are from the 850 hPa (~1.5 km) level representing the near surface. A temporal filter (High Pass Variability Hoskins Filter) is applied in order to remove small-scale features that may obscure the overall patterns. This is given in units of m^2/sec^2 .

Feature Raster Dataset Name:		eke_850 (suffixed with the month, season or mean annual, e.gjan (January); _djf (December, January, February) or _ann (Mean Annual))
Mxd Layers Created: Mo	onthly:	January
		February
		March
		April
		May
		June
		July
		August
		September
		October
		November
		December

Seasonal:	December, January, February
	March, April, May
	June, July, August
	September, October, November
Annual:	Mean Annual Eddy Kinetic Energy

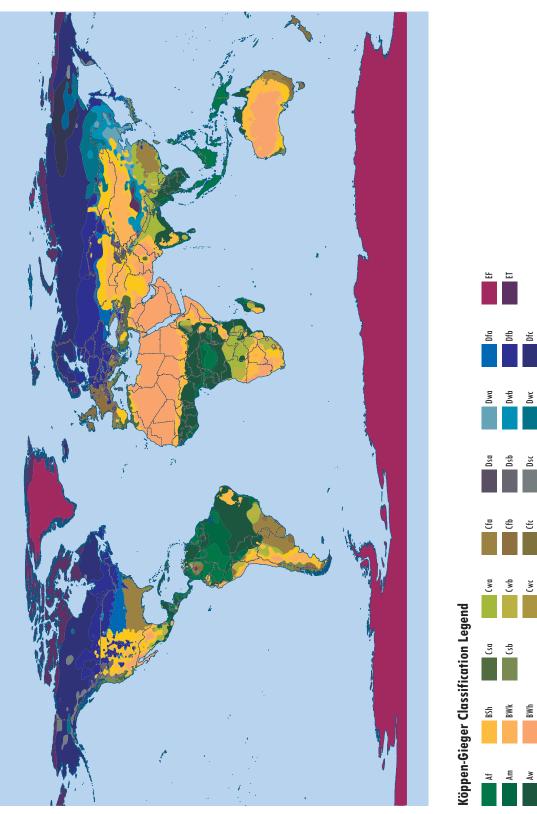
2.3.5 Surface Variables

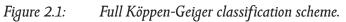
Soil Moisture

This is the total absolute amount of moisture held in layers 1 (0–10 cm), 2 (10–25 cm), 3 (25–65 cm), and 4 (65–150 cm). This will vary depending on the type of soil represented in the model, which in this case is a generic soil similar to a medium loam. The initial value of layer 4 is specified but is then allowed to interact with the rest of the system until equilibrium is reached – this can take decades of model time. Soil moisture is measured in units of kg/m².

Feature Raster Dataset Name:	sm (suffixed with the month, season or mean annual, e.gjan (January); _djf (December, January, February) or _ann (Mean Annual))
Mxd Layers Created: Monthly:	January
	February
	March
	April
	May
	June
	July
	August
	September
	October
	November
	December

Seasonal:	December, January, February
	March, April, May
	June, July, August
	September, October, November
Annual:	Mean Annual Soil Moisture




Köppen Classification

The Köppen Classification Scheme (also known as the Köppen-Geiger Scheme) is included in this study as it is a widely known and understood classification of dominant climate regions (see Figure 2.1). The letters used represent 1st, 2nd and 3rd order climate classifications. The 1st order group is based on the average annual precipitation, average monthly precipitation and average monthly temperature. The scheme is then further subdivided into 2nd order categories based on precipitation, and 3rd order categories based on temperature (see the table in Figure 2.1). An example of the use of this classification scheme is the U.S. states located along the Gulf of Mexico which are designated "Cfa". The "C" represents Temperate (mild mid-latitude) category, the second letter "f" stands for the German word feucht or moist (no dry season) and the third letter "a" indicates that it has hot summer temperatures.

The climate regions were calculated using the temperature and precipitation generated by the GCM. It should be noted that the Köppen Scheme is often too detailed to compare with palaeoclimate proxy data, but is easier for the less-detailed Basic than Full Köppen outputs (see below). The Full Köppen schemes have been altitude corrected to sea-level by first converting all the temperatures to the values that they would be if they were at sea-level, by assuming a lapse-rate correction. The Köppen Scheme is based on Present Day classifications of climate regions; therefore, it may not always be applicable to past climate zones that have no Present Day equivalents. Where this is the case, the model will classify the environment into the Köppen zone that most closely matches the data.

Dfc Dfd

Dsc Dsd

č

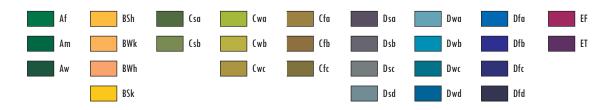
BWh

BSK

Dwd

Key to Worl	Key to World Köppen-Geiger Climate Classification Map	er Climate Clas	ssification Map
1st Order	2nd Order	3rd Order	Description
A			Tropical
	f		Rainforest
	m		Monsoon
	M		Savannah
В			Arid
	M		Desert
	S		Steppe
		h	Hot
		k	Cold
С			Temperate
	s		Dry Summer
	M		Dry Winter
	f		Without Dry Season
		а	Hot Summer
		р	Warm Summer
		С	Cold Summer
D			Cold
	S		Dry Summer
	w		Dry Winter
	f		Without Dry Season
		а	Hot Summer
		р	Warm Summer
		C	Cold Summer
		q	Very Cold Summer
Щ			Polar
	Ц		Tundra
	ц		Frost

Basic Köppen Scheme

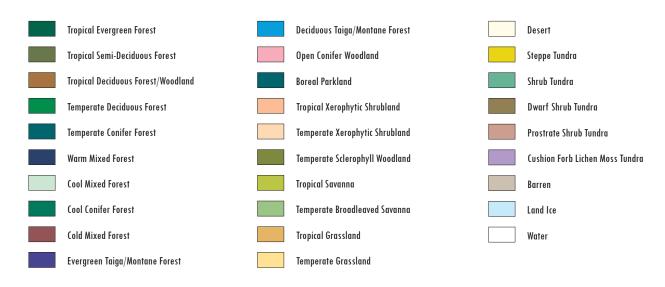

The Basic Köppen Scheme used in this study uses six letters to divide the world into six major climate regions: Tropical Rainy – A, Dry Climates – B, Warm Temperate Rainy – C, Cold Boreal Forest – , Tundra/Polar – E, and Cold (High Altitude) – H, plus water. This is a greatly simplified version of the original Köppen-Geiger Scheme with water and H = Cold (High Altitude) added (see Figure 2.3.5.1). These climate regions are based on the average annual precipitation, average monthly precipitation and average monthly temperature.

Feature Raster Dataset Name:		kopbas_ann	
Mxd Layers Created:	Annual:	Basic Koppen Scheme	

Full Köppen Scheme (corrected to sea-level)

Thirty climate regions are defined in the Full Köppen Scheme (see Figure 2.3.5.2) based on the original Köppen-Geiger Scheme, plus water and H = Cold (High Altitude).

Figure 2.2: Legend used for the Full Köppen Scheme.


Letters correspond to those given in the table shown in Figure 2.3.5.1., plus water and H =Cold (High Altitude), which were added after Köppen created his system.

Feature Raster Dataset Name:		kopfull_ann	
Mxd Layers Created:	Annual:	Full Koppen Scheme (corrected to sea level)	

Biomes

The surface variables also include biomes which are the combined dominant forms of plant life and the prevailing climate produced by the University of Bristol's Biome4 model, which was used in the ocean-atmosphere GCM. Twenty-nine biomes are defined within this model (see Figure 2.3).

Figure 2.3: Legend used for the Biome4 Model.

Mean Annual Biome4

This is the biomes present as calculated by the model with climate generated by the GCM, CO_2 set at 340 ppm, and soils were constant.

Feature Raster Dataset Name:	biome_mab4

Mxd Layers Created:

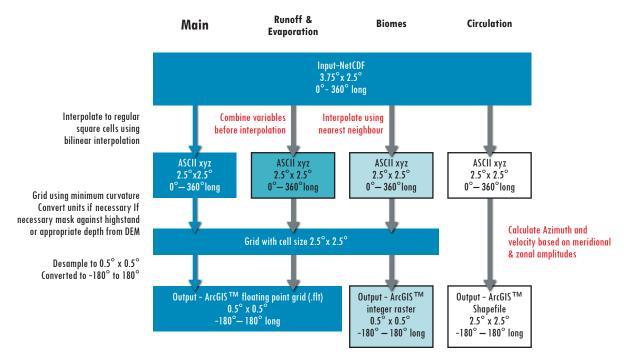
Mean Annual Biome4

Mean Annual Biome4 CO2

This is the biomes present as calculated by the model with climate and CO_2 generated by the GCM, and soils were constant.

Feature Raster Dataset Name:		biome_mab4co2	
Mxd Layers Created:	Annual:	Mean Annual Biome4 CO2	

To make them more user-friendly the Identify pointer within the mxd shows the biome type from the legend, rather than the number assigned to that biome within the Biome4, Biome4 CO_2 , Full Köppen Scheme and Basic Köppen Scheme layers. To use this function click on the Identify tool, and from the "Identify from" drop-down menu select "<Visible layers>"; the vegetation type will then be listed in the box that pops up.


CHAPTER 3

Getech Conversion Methods

3. Getech Conversion Methods

The outputs from the HadCM3L model are multi-dimensional netCDF grids, with a rectangular cell size of 3.75° longitude by 2.5° latitude and an extent of 0° to 360° in longitude by -90° to 90° latitude. In order to be comparable with other Getech products, we needed to provide the grids at a cell size of 0.5° in the range -180° to 180°. The process used for this conversion is shown in Figure 3.1.

Figure 3.1: Flow chart showing the process used to create the $ArcGIS^{TM}$ files for the mxd.

The main process is shown on the left, with the alternate processes for biomes, runoff and evaporation, and circulation shown to the right. Changes to the main process are highlighted in red for the alternative methods.

The main process depicted in Figure 3.1 was appropriate for most variables as the majority were continuous data; hence, bilinear interpolation has been used to resample to a regular 2.5° by 2.5° cell size. A minority of variables needed adjustments to the main process, such as the Biomes variable, which have a discrete value per cell, and hence required a nearest neighbour technique to be applied to ensure no inappropriate smoothing/interpolation during resampling. Additionally, the Biomes variable required the final grid to be an integer raster, unlike other variables. Multiple layers (e.g. total runoff and total evaporation) required more than one variable from the netCDFs to be added together prior to resampling to ensure consistency at the coastlines once the cell size was regularised. Circulation, both atmospheric and oceanic, need to be output as point files so that the direction and magnitude of the circulation could be displayed as a proportional arrow pointing in the direction of motion. Many layers were not global and, due to the block nature of the large original cell size, required expansion and clipping to the coastline. This was done by using a large blanking distance (grid expansion distance from points) when gridding the data, then masking against the highstand coastline. Certain oceanic layers are depth specific, so were masked against the DEM (Digital Elevation Model) grid for the top of the depth layer. To perform these processes, a combination of ArcGISTM Spatial Analyst and Geosoft Oasis has been employed to ensure minimum alteration to the original data; any differences from the Bristol netCDFs will be due to the interpolation applied to smooth the data, and resampling from the rectangular cell size of 3.75° by 2.5° to 0.5° by 0.5° required for future analysis of the results. Circulation was kept at a resolution of 2.5° x 25° for clarity.

CHAPTER 4 Mxd Format

4. Mxd Format

An ArcGISTM v10 mxd is supplied for each of the 11 timeslices; this and all supporting files (feature raster datasets and feature classes within the geodatabase) are supplied in geographic coordinate system, WGS84, to allow for integration with other Getech *Globe* deliverables. Three displays are given within the mxd for each timeslice: World_Mollweide, providing a global view; North Polar Orthographic and South Polar Orthographic, both giving more detailed polar views.

For consistency, the feature raster datasets and feature classes have the same filename structure within each timeslice. Additionally, every feature raster dataset and feature class has metadata attached which gives the Stage name and a description of that file. This metadata was added because the naming structure means that if these feature raster datasets and feature classes are moved to different locations and renamed, then identification of the timeslice may not be possible. The naming convention also means that if the feature raster datasets and feature classes are added to an SDE database, searching will be difficult as they will appear with the same name but no visible age identifier. The metadata can be accessed within ArcCatalog[™] by navigating to the timeslice required in the left-hand panel, and opening the geodatabase, e.g. Tithonian_Jan_2015_issue1, left click on the layer you are interested in, e.g. icedpt_djf (ice depth for December, January, February), and click on the "Description" tab in the right-hand panel to view the full metadata. The metadata also includes the Plate Model and Palaeogeography version numbers, the Model Name and the Issue details.

In addition to the variables listed in Tables 4.1a–d, all of the timeslices within the mxd include modern country outlines rotated to the relevant Stage; hillshade, created using Getech's global palaeogeographic maps, and sea-level highstand for the appropriate Stage, created as part of the global (*Globe* core deliverable) palaeogeographic mapping project.

Variable	Units	Timescale	Depth Level (where appropriate)
Atmosphere			
Surface Temperature	degrees C	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/ January/February March/April/May June/July/August September/October/November Annual: Mean Annual Surface Temperature	N/A
Atmospheric Temperature at 1.5 m	degrees C	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/ February March/April/May June/July/August September/October/November Annual: Mean Annual Atmospheric Temperature at 1.5 m Additional: Cold Month Mean at 1.5 m; Warm Month Mean at 1.5 m	N/A
Atmospheric Circulation	m⁄s	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/ February March/April/May June/July/August September/October/November Annual: Mean Annual Atmospheric Circulation	N/A
Total Precipitation	mm/day	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/ February March/April/May June/July/August September/October/November Annual: Mean Annual Total Precipitation	N/A

Table 4.1a:Variables included within the project mxd.

Variable	Units	Timescale	Depth Level (where appropriate)
Atmosphere			
Surface Temperature	mm⁄day	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/ February March/April/May June/July/August September/October/November Annual: Mean Annual Total Evaporation	N/A
Precipitation-Evaporation	mm⁄day	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/ February March/April/May June/July/August September/October/November Annual: Mean Annual Precipitation- Evaporation	N/A
Total Runoff	mm⁄day	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/ February March/April/May June/July/August September/October/November Annual: Mean Annual Total Runoff	N/A
Surface Air Pressure	hPa	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/ February March/April/May June/July/August September/October/November Annual: Mean Annual Surface Pressure	N/A
Snow Depth at Surface	mm/day	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/ February March/April/May June/July/August September/October/November Annual: Mean Annual Snow Depth at Surface	N/A

Table 4.1b:Variables included within the project mxd continued.

Variable	Units	Timescale	Depth Level (where appropriate)
Oceans			
Ocean Circulation	cm/s	Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Ocean Circulation	Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m, 4,000 m
Ocean Salinity	PSU	Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Ocean Salinity	Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m, 4,000 m
Ocean Temperature	degrees C	Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Ocean Temperature	Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m, 4,000 m
Upwelling (Vertical Velocity)	cm/day	Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Upwelling	Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m, 4,000 m
Mixed Layer Depth	m	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Mixed Layer Depth	N/A
Sea Ice Concentration	% (0-1)	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Sea Ice Concentration	N/A

Table 4.1c:Variables included within the project mxd continued.

Variable	Units	Timescale	Depth Level (where appropriate)
Oceans			
Sea Ice Thickness	m	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Sea Ice Thickness	Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m, 4,000 m
Storms			
Eddy Kinetic Energy	M ² s ⁻²	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Eddy Kinetic Energy	Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m, 4,000 m
Surface			
Soil Moisture	kg∕m²	Monthly: January, February, March, April, May, June, July, August, September, October, November, December Seasonal: December/January/February March/April/May June/July/August September/October/November Annual: Mean Annual Soil Moisture	Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m, 4,000 m
Basic Köppen Scheme	1–7	Annual: Mean Annual Basic Köppen	Surface, 50 m, 100 m, 200 m, 500 m, 1,000 m, 2,000 m, 3,000 m, 4,000 m
Full Köppen Scheme (corrected to sea-level)	1–32	Annual: Mean Annual Full Köppen (corrected to sea-level)	N/A
Mean Annual Biome4 CO ²	1–29	Annual: Mean Annual Biome4 CO ²	
Mean Annual Biome4	1–29	Annual: Mean Annual Biome4	N/A

Table 4.1d:Variables included within the project mxd continued.

Please note that, for clarity, the ocean depth levels are labelled as the nearest appropriate number in metres, e.g 95.75 m is rounded to 100 m, and 2,116.15 m rounded to 2,000 m (Table 4.2). To find the depth modelled within the mxd, right click on the appropriate layer and go to "properties" and click on the "source" tab. In the "Data Source" box the "Raster" or "Feature class" name is given which includes the depth, e.g. sl_55_djf is vertical velocity at 55.5 m for December, January, February and cur-uv_c95_djf is the circulation (meridional and zonal) for a depth of 95.75 m in December, January, February. Most of the variable measurements are taken at the mid point of the grid cells (e.g. Ocean Salinity) although some are taken from the bottom of the grid cells (e.g. Upwelling, vertical velocity).

Displayed in mxd	Source File Label (suffixed with season code)	Grid Depth
Half Grid		
Surface		
50 m	sl5	5m
100 m	sl47	47.85 m
200 m	sl95	9575 m
500 m	sl203	203.70 m
1,000 m	sl447	447.05 m
2,000 m	s1995	995.55 m
3,000 m	sl2116	2,116.15 m
4,000 m	sl2731	2,731.45 m
Bottom Grid	sl3962	3,962.05 m
Surface		
50 m	vv_10	10 m
100 m	vv_55	<i>55.5</i> m
200 m	vv_113	113 m
500 m	vv_242	242.60 m
1,000 m	vv_534	53470 m
2,000 m	vv_1193	1,193.20 m
3,000 m	vv_1808	1,808.50 m
4,000 m	vv_3039	3,039.10 m
	vv_4269	4,269.10 m

Table 4.2:Water depth levels used within mxd.

The legends used for each variable are designed to be kept consistent through time and with those used by the University of Bristol. As such, they have to represent both icehouse and hothouse periods which cover a large range of temperatures, etc. The colour schemes were chosen to maximise detail, but it should be noted that in some cases the maximum calculated model values will be values equal to, or more than, the maximum value shown on the legend and the minimum modelled value may be equal to, or less than, the minimum legend value. Absolute minimum and maximum values can be seen by right clicking on the data layer, selecting "Properties and Source", then scrolling down the properties to "Statistics" where you will find listed the minimum, maximum, mean and standard deviation values for that layer.

Where the data layers do not represent global variables (e.g. runoff, which is only onshore, and salinity, which is marine), the data has been interpolated (based on surrounding values) and clipped to the coastline. It should be noted that this means that the data shown on the smaller offshore islands is entirely interpolated and not based on the topographic features of those islands and model calculations.

In addition to the mxd and geodatabase, detailed above, we now also provide the data layers as .lyr files that can be dragged directly into a blank mxd with the legends already applied, for ease of use. These .lyr files can be found within each timeslice folder in a sub-folder called "(Stage Name) Layer Files". Each of these sub-folders contains further folders that split the palaeoclimate data into sections (Atmosphere, Cultural, Oceans, Storms, and Surface) that contain the relevant layer files (.lyr).

CHAPTER 5

References

5. References

DeConto, R. M., Thompson, S. L. and Pollard, D. 1999. Recent advances in paleoclimate modeling toward better simulations of warm paleoclimates. Warm climates in earth history. Cambridge University Press, Ch. 2, p. 21-49.

Getech, 2013. Getech's Atlases of Global Palaeogeography: Jurassic. Report Number G1318.

Gough, D.O., 1981. Solar interior structure and luminosity variations. Solar Physics, vol. 74 (1), p. 21-34.

Appendix 1 A1. Additional Variables

Below is a list of additional variables, produced by Bristol University using the HadCM3L model, which were not included in this deliverable; they were omitted for clarity and due to a number of them only being required for specialist climate research. If any of the additional variables are required, they can be processed and provided for an additional cost. Please contact Paul Carey (paul.carey@getech.com), our Sales and Marketing Director, for further details and prices.

A1.1 Atmosphere

MoistureQTFlux_mm_hyb

Long Name:	QT SOURCE/SINK IN QT_POSS KG/M2/S
Standard Name:	none
Processing:	monthly_mean_hybrid_coords
Units:	kg m-2 s-1

cldamount_mm_hby

Long Name:	LAYER CLOUD AMOUNT IN EACH LAYER
Standard Name:	none
Processing:	monthly_mean_hybrid_coords
Units:	0-1

lowCloud_mm_ua

Long Name:	LOW CLOUD AMOUNT
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical _coord_(atmos)
Units:	-

medCloud_mm_ua

Long Name:	MEDIUM CLOUD AMOUNT
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical _coord_(atmos)
Units:	-

highCloud_mm_ua

Long Name:	HIGH CLOUD AMOUNT
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(atmos)
Units:	-

QCL_mm_hyb

Long Name:	CLOUD LIQUID WATER AFTER DYN CLOUD
Standard Name:	atmosphere_cloud_liquid_water_content
Processing:	monthly_mean_hybrid_coords
Units:	kg kg-1

QCF_mm_hyb

Long Name:	CLOUD ICE CONTENT AFTER DYNAM CLOUD
Standard Name:	atmosphere_cloud_ice_content
Processing:	monthly_mean_hybrid_coords
Units:	kg kg-1

totCloud_mm_ua

Long Name:	TOTAL CLOUD AMOUNT - RANDOM OVERLAP
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(atmos)
Units:	0-1

totCloudranmax_mm_ua

Long Name:	TOTAL CLOUD AMOUNT MAX/RANDOM OVERLAP
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(atmos)
Units:	0-1

Solar_mm_s3_srf

Long Name:	NET DOWN SURFACE SW FLUX: SW TS ONLY
Standard Name:	surface_net_downward_shortwave_flux
Processing:	monthly_mean_sampled_3_hourly_at_surface
Units:	W m-2

downSOL_mm_TOA

Long Name:	INCOMING SW RAD FLUX (TOA):ALL TSS
Standard Name:	toa_incoming_shortwave_flux
Processing:	monthly_mean_at_top_of_atmosphere
Units:	W m-2

upSOL_mm_s3_TOA

Long Name:	OUTGOING SW RAD FLUX (TOA)
Standard Name:	toa_outgoing_shortwave_flux
Processing:	monthly_mean_sampled_3_hourly_at_top_of_atmosphere
Units:	W m-2

clskyUpSol_mm_s3_TOA

Long Name:	CLEAR-SKY (II) UPWARD SW FLUX (TOA)
Standard Name:	toa_outgoing_shortwave_flux_assuming_clear_sky
Processing:	monthly_mean_sampled_3_hourly_at_top_of_atmosphere
Units:	W m-2

clskyDownSol_mm_s3_srf

Long Name:	CLEAR-SKY (II) DOWN SURFACE SW FLUX
Standard Name:	surface_downwelling_shortwave_flux_in_air_assumingrsdscs
Processing:	monthly_mean_sampled_3_hourly_at_surface
Units:	W m-2

clskyUpSol_mm_s3_srf

	Long Name:	CLEAR-SKY (II) UP SURFACE SW FLUX
	Standard Name:	surface_upwelling_shortwave_flux_in_air_assuming_crsuscs
	Processing:	monthly_mean_sampled_3_hourly_at_surface
	Units:	W m-2
swhr_	_mm_hyb	
	Long Name:	SW HEATING RATES: ALL TIMESTEPS
	Standard Name:	tendency_of_air_temperature_due_to_shortwave_heatitntsw
	Processing:	monthly_mean_hybrid_coords
	Units:	K s-1

csswhr_mm_s3_hyb

Long Name:	CLEAR-SKY SW HEATING RATES
Standard Name:	tendency_of_air_temperature_due_to_shortwave_heatinone
Processing:	monthly_mean_sampled_3_hourly_hybrid_coords
Units:	K s-1

downSol_Seaice_mm_s3_srf

Long Name:	TOTAL DOWNWARD SURFACE SW FLUX
Standard Name:	surface_downwelling_shortwave_flux_in_air
Processing:	monthly_mean_sampled_3_hourly_at_surface
Units:	W m-2

solar_mm_s3_trop

Long Name:	NET DOWNWARD SW FLUX AT THE TROP
Standard Name:	tropopause_net_downward_shortwave_flux
Processing:	monthly_mean_sampled_3_hourly_at_tropopause
Units:	W m-2

upSol_mm_s3_trop

Long Name:	UPWARD SW FLUX AT THE TROP
Standard Name:	not_found
Processing:	monthly_mean_sampled_3_hourly_at_tropopause
Units:	W m-2

longwave_mm_s3_srf

Long Name:	NET DOWN SURFACE LW RAD FLUX
Standard Name:	surface_net_downward_longwave_flux
Processing:	monthly_mean_sampled_3_hourly_at_surface
Units:	W m-2

olr_mm_s3_TOA

Long Name:	OUTGOING LW RAD FLUX (TOA)
Standard Name:	not_found
Processing:	monthly_mean_sampled_3_hourly_at_top_of_atmosphere
Units:	W m-2

csolr_mm_s3_TOA

	Long Name:	CLEAR-SKY (II) UPWARD LW FLUX (TOA)
	Standard Name:	not-found
	Processing:	monthly_mean_sampled_3_hourly_at_top_of_atmosphere
	Units:	W m-2
ilr_n	nm_s3_srf	
	Long Name:	DOWNWARD LW RAD FLUX: SURFACE
	Standard Name:	none
	Processing:	monthly_mean_sampled_3_hourly_at_surface
	Units:	W m-2
csilr_	_mm_s3_srf	
	Long Name:	CLEAR-SKY (II) DOWN SURFACE LW FLUX
	Standard Name:	not_found
	Processing:	monthly_mean_sampled_3_hourly_at_surface
	Units:	W m-2
lwhr_	_mm_s3_hyb	
	Long Name:	LW HEATING RATES
	Standard Name:	tendency_of_air_temperature_due_to_longwave_heatintntlw
	Processing:	monthly_mean_sampled_3_hourly_hybrid_coords

Units:

K s-1

cslwhr_mm_s3_hyb

Long Name:	CLEAR-SKY LW HEATING RATES
Standard Name:	tendency_of_air_temperature_due_to_longwave_heatinnone
Processing:	monthly_mean_sampled_3_hourly_hybrid_coords
Units:	K s-1

longwave_mm_s3_trop

Long Name:	NET DOWNWARD LW FLUX AT THE TROP
Standard Name:	not_found
Processing:	monthly_mean_sampled_3_hourly_at_tropopause
Units:	W m-2

ilr_mm_s3_trop

Long Name:	TOTAL DOWNWARD LW FLUX AT THE TROP
Standard Name:	none
Processing:	monthly_mean_sampled_3_hourly_at_tropopause
Units:	W m-2

atmosCorr_mm_ua

Long Name:	ATMOS ENERGY CORR'N IN COLUMN W/M2
Standard Name:	not_found
Processing:	monthly_mean_unspecified_vertical_coord_(atmos)
Units:	W m-2

botmelt_mm_srf

Long Name:	HEAT FLUX THROUGH SEA ICE (GBM) W/M2
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	W m-2

soilHeatFlux_mm_soil

Long Name:	HT FLUX FROM SURF TO DEEP SOIL LEV 1
Standard Name:	downward_heat_flux_in_soil
Processing:	monthly_mean_on_soil_levels
Units:	W m-2

CDrag_mm_srf

Long Name:	CD
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	-

CH_mm_srf

Long Name:	СН
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	-

windShear_mm_hyb

	Long Name:	SURFACE LAYER WIND SHEAR
	Standard Name:	not_found
	Processing:	monthly_mean_hybrid_coords
	Units:	-
sh_m	ım_hyb	
	Long Name:	SURFACE & B.LAYER HEAR FLUXES W/M2
	Standard Name:	none
	Processing:	monthly_mean_hybrid_coords
	Units:	W m-2
taux_	_mm_hyb	
	Long Name:	X-COMP OF SURF & BL WIND STRESS N/M2
	Standard Name:	surface_downward_eastward_stress
	Processing:	monthly_mean_hybrid_coords
	Units:	N m-2
tauy_mm_hyb		
	Long Name:	Y-COMP OF SURF & BL WIND STRESS N/M2
	Standard Name:	surface_downward_northward_stress
	Processing:	monthly_mean_hybrid_coords
	Units:	N m-2

moistureFlux_mm_hyb

	Long Name:	SURF & BL TOTL MOISTURE FLUX KG/M2/S
	Standard Name:	none
	Processing:	monthly_mean_hybrid_coords
	Units:	kg m-2 s-1
wme_	_mm_srf	
	Long Name:	WIND MIXING EN'GY FLUX INTO SEA W/M2
	Standard Name:	not_found
	Processing:	monthly_mean_at_surface
	Units:	W m-2
sh_n	nm_srf	
	Long Name:	SURFACE SH FLUX FROM SEA (GBM) W/M2
	Standard Name:	surface_upward_sensible_heat_flux
	Processing:	monthly_mean_at_surface
	Units:	W m-2
lh_mm_srf		
	Long Name:	SURFACE SH LATENT HEAT FLUX W/M2
	Standard Name:	surface_upward_latent_heat_flux
	Processing:	monthly_mean_at_surface
	Units:	W m-2

topmelt_mm_srf

Long Name:	SEAICE TOP MELTING LH FLUX (GBM) W/M2
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	W m-2

temp_mm_dsO_1_5m

Long Name:	TEMPERATURE AT 1.5M
Standard Name:	not_found
Processing:	monthly_mean_sampled_daily_at_0hrs_1.5m_above_surface
Units:	K

q_mm_1_5m

Long Name:	SPECIFIC HUMIDITY AT 1.5M
Standard Name:	specific_humidity
Processing:	monthly_mean_1.5m_above_surface
Units:	kg kg-1

moistureFlux_mm_srf

Long Name:	TOTAL SURF MOIST FLUX PER TIMESTEP
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

rh_mm_1_5mm

Long Name:	RELATIVE HUMIDITY AT 1.5M
Standard Name:	relative_humidity
Processing:	monthly_mean_1.5m_above_surface
Units:	-

wind_mm_10m

Long Name:	10 METRE WIND SPEED M/S
Standard Name:	wind_speed
Processing:	monthly_mean_10m_above_surface
Units:	m s-l

dewT_mm_1_5m

Long Name:	DEWPOINT AT 1.5m (K)
Standard Name:	none
Processing:	monthly_mean_1.5m_above_surface
Units:	K

transpiration_mm_srf

Long Name:	TRANSPIRATION RATE KG/M2/S
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

lsrain_mm_srf

	Long Name:	LARGE SCALE RAINFALL RATE KG/M2/S	
	Standard Name:	not_found	
	Processing:	monthly_mean_at_surface	
	Units:	kg m-2 s-1	
lssnoи	v_mm_srf		
	Long Name:	LARGE SCALE SNOWFALL RATE KG/M2/S	
	Standard Name:	not_found	
	Processing:	monthly_mean_at_surface	
	Units:	kg m-2 s-1	
cvrain_mm_srf			
	Long Name:	CONVECTIVE RAINFALL RATE KG/M2/S	
	Standard Name:	not_found	
	Processing:	monthly_mean_at_surface	

Units: kg m-2 s-1

cvsnow_mm_srf

Long Name:	CONVECTIVE SNOWFALL RATE KG/M2/S
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

convcld_mm_hyb

Long Name:	CONV.CLOUD AMOUNT ON EACH MODEL LEV
Standard Name:	not_found
Processing:	monthly_mean_hybrid_coords
Units:	-

convCldWater_mm_hyb

Long Name:	CONV CLOUD CONDENSED WATER KG/KG
Standard Name:	not_found
Processing:	monthly_mean_hybrid_coords
Units:	kg kg-1

rain_mm_srf

Long Name:	TOTAL RAINFALL RATE: LS+CONV KG/M2/S
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

snow_mm_srf

Long Name:	TOTAL SNOWFALL RATE: LS+CONV KG/M2/S
Standard Name:	snowfall_flux
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

precip_mm_dsO_srf

Long Name:	TOTAL PRECIPITATION RATE KG/M2/S
Standard Name:	precipitation_flux
Processing:	monthly_mean_sampled_daily_at_0hrs_at_surface
Units:	kg m-2

snowmeltHflx_mm_srf

Long Name:	LAND SNOW MELT HEAT FLUX W/M2
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	W m-2

canopyWater_mm_can

Long Name:	CANOPY WATER CONTENT
Standard Name:	not_found
Processing:	monthly_mean_at_canopy_height
Units:	kg m-2

soiltemp_mm_soil

Long Name:	DEEP SOIL TEMP. AFTER HYDROLOGY DEGK
Standard Name:	3
Processing:	monthly_mean_on_soil_levels
Units:	Κ

SoilMoist_mm_soil

Long Name:	UNFROZEN SOIL MOISTURE FRACTION
Standard Name:	mass_fraction_of_unfrozen_water_in_soil_moisture
Processing:	monthly_mean_on_soil_levels
Units:	-

frozenSoilMoist_mm_soil

Long Name:	FROZEN SOIL MOISTURE FRACTION
Standard Name:	mass_fraction_of_frozen_water_in_soil_moisture
Processing:	monthly_mean_on_soil_levels
Units:	-

snowmelt_mm_srf

Long Name:	LAND SNOW MELT RATE KG/M2/S
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

canopyThru_mm_can

Long Name:	CANOPY THROUGHFALL RATE KG/M2/S
Standard Name:	not_found
Processing:	monthly_mean_at_canopy_height
Units:	kg m-2 s-1

srfRunoff_mm_srf

Long Name:	SURFACE RUNOFF RATE KG/M2/S
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

subsrfRunoff_mm_srf

Long Name:	SUB-SURFACE RUNOFF RATE KG/M2/S
Standard Name:	not_found
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

ke_mm_ua

Long Name:	TOTAL KE PER UNIT AREA X10E-6 J/M2
Standard Name:	atmosphere_kinetic_energy_content
Processing:	monthly_mean_unspecified_vertical_coord_(atmos)
Units:	J

mountainTorque_mm_bl

Long Name:	mountain torque per unit area N/m
Standard Name:	not_found
Processing:	monthly_mean_boundary_layer
Units:	N m-1

p_mm_trop

	Long Name:	PRESSURE AT TROP LEV-NEED HT, TEMP
	Standard Name:	tropopause_air_pressure
	Processing:	monthly_mean_at_tropopause
	Units:	Pa
temp	_mm_trop	
	Long Name:	TEMP AT TROP LEVEL - NEED HT, PRESS
	Standard Name:	tropopause_air_temperature
	Processing:	monthly_mean_at_tropopause
	Units:	K
ht_n	Units: m_trop	K
ht_n		K HEIGHT OF TROP - NEED TEMP, PRESS
ht_m	nm_trop	
ht_m	im_trop Long Name:	HEIGHT OF TROP - NEED TEMP, PRESS
ht_m	Im_trop Long Name: Standard Name:	HEIGHT OF TROP - NEED TEMP, PRESS height
	m_trop Long Name: Standard Name: Processing:	HEIGHT OF TROP - NEED TEMP, PRESS height monthly_mean_at_tropopause
	Im_trop Long Name: Standard Name: Processing: Units:	HEIGHT OF TROP - NEED TEMP, PRESS height monthly_mean_at_tropopause

Processing: monthly_mean_at_mean_sea_level

Pa

air_pressure_at_sea_level

Units:

Standard Name:

theta_mm_hyb

Long Name:	THETA AFTER TIMESTEP
Standard Name:	air_potential_temperature
Processing:	monthly_mean_hybrid_coords
Units:	Κ
m_hyb	
Long Name:	SPECIFIC HUMIDITY AFTER TIMESTEP
Standard Name:	specific_humidity
2	

q_mr

Long Name:	SPECIFIC HUMIDITY AFTER TIMESTEP
Standard Name:	specific_humidity
Processing:	monthly_mean_hybrid_coords
Units:	kg kg-1

convcld_mm_ua

Long Name:	CONV CLOUD AMOUNT AFTER TIMESTEP
Standard Name:	not_found
Processing:	monthly_mean_unspecified_vertical_coord_(atmos)
Units:	-

CCCWaterPath_mm_ua

Long Name:	CONV CLOUD LIQUID WATER PATH
Standard Name:	not_found
Processing:	monthly_mean_unspecified_vertical_coord_(atmos)
Units:	kg m-2

blht_mm_bl

Long Name:	BOUNDARY LAYER DEPTH AFTER TIMESTEP
Standard Name:	atmosphere_boundary_layer_thickness
Processing:	monthly_mean_boundary_layer
Units:	m

iceconc_mm_srf

Long Name:	SEA ICE FRACTION AFTER TIMESTEP
Standard Name:	sea_ice_area_fraction
Processing:	monthly_mean_at_surface
Units:	0-1

icedepth_mm_srf

Long Name:	SEA ICE DEPTH (MEAN OVER ICE) M
Standard Name:	sea_ice_thickness
Processing:	monthly_mean_at_surface
Units:	m

A1.2 Ocean

HTN_mm_uo

Long Name:	GBM HTN INTO OCEAN BUDGET W/M**2
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

carryheat_mm_uo

Long Name:	CARYHEAT AFTER ROW CALCULATION W/M2
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

zMeanTT_mm_uo

Long Name:	MEAD DIAGNOSITICS: TEMPERATURE W
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	-

zMeanSS_mm_uo

Long Name:	MEAD DIAGNOSITCS: SALINITY KG/S
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	-

anomSeaiceHflux_mm_uo

Long Name:	ANOM.HEAT SINK AT OCN FLOOR W/M2
Standard Name:	M2
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

srfSalFlux_mm_uo

Long Name:	WATER_FLUX*SALINITY/DENSITY m Gs**-1
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m s-1

uVelSeaice_mm_uo

Long Name:	U COMPONENT OF ICE VELOCITY (M.S-1)
Standard Name:	eastward_sea_ice_velocity
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m s-1

vVelSeaice_mm_uo

Long Name:	V COMPONENT OF ICE VELOCITY (M.S-1)
Standard Name:	northward_sea_ice_velocity
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m s-1

HTNintoICE_mm_uo

Long Name:	GBM HTN INTO ICE BUDGET W/M**2
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

temp_mm_uo

Long Name:	OCN TOP-LEVEL TEMPERATURE K
Standard Name:	sea_water_temperature
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	degC

HTNICEwhenICY_mm_uo

Long Name:	GBM HTN INTO OCN WHERE ICY W/M**2
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

snowdepthonseaice_mm_uo

Long Name:	GBM SNOWDEPTH ON SEA-ICE M
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

uStressIceOc_mm_uo

Long Name:	U CPT OF OCEAN STRESS ON ICE Pa
Standard Name:	downward_eastward_stress_at_sea_ice_base
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	Pa

vStressIceOc_mm_uo

Long Name:	V CPT OF OCEAN STRESS ON ICE Pa
Standard Name:	downward_northward_stress_at_sea_ice_base
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	Pa

uCoriolis_mm_uo

Long Name:	U CPT OF CORIOLIS STRESS ON ICE Pa
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	Pa

vCoriolis_mm_uo

Long Name:	V CPT OF CORIOLIS STRESS ON ICE Pa
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	Pa

dSeaiceConcdt_mm_uo

Long Name:	d/dt AICE DYNAMICS s-1
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	s-1

dSeaiceDepthdt_mm_uo

Long Name:	d/dt HICE DYNAMICS m s-1
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m s-1

dSeaiceSnowDepthdt_mm_uo

Long Name:	d/dt GBM SNOWDEPTH DYNAMICS m s-1
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m s-1

dSeaiceDepthdtdiff_mm_uo

Long Name:	d/dt HICE DIFFUSION m s-1
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m s-1

dSeaiceConcdttherm_mm_uo

Long Name:	d/dt AICE THERMODYN s-1
Standard Name:	none
Processing:Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	s-1

dSeaiceDepthdttherm_mm_uo

Long Name:	d/dt HICE THERMODYN m s-1
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m s-1

dSeaiceSnowDepthdttherm_mm_uo

Long Name:	d/dt GBM SNOWDEPTH THERMODYN m s-1
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m s-1

uStressIce_mm_uo

	Long Name:	U CPT OF INTERNAL ICE STRESS Pa
	Standard Name:	none
	Processing:	monthly_mean_unspecified_vertial_coord_(ocean)
	Units:	Pa
vStre	essIce_mm_uo	
	Long Name:	V CPT OF INTERNAL ICE STRESS Pa
	Standard Name:	none
	Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
	Units:	Pa
temp	_mm_dpth	
	Long Name:	PTOTENTIAL TEMPERATURE (OCEAN) DEG.C
	Standard Name:	sea_water_temperature

Processing: monthly_mean_depth_levels

Units: degC

snowdepth_mm_uo

Long Name:	SNOW DEPTH (OCEAN)
Standard Name:	surface_snow_thickness_where_sea_ice
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	m

carryheatice_mm_uo

Long Name:	GBM CARYHEAT MISC HEAT FLUX (ICE)W/M2
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

OcIceHflux_mm_uo

Long Name:	GBM HEAT FLUX: OCEAN TO ICE (OCN) W/M2
Standard Name:	upward_sea_ice_basal_heat_flux
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

carrySalt_mm_uo

Long Name:	RATE OF SALINITY CHANGE (ICE) PSU/S
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	psu s-1

TAUX_mm_uo

Long Name:	TAUX: X_WINDSTRESS N/M2 A
Standard Name:	surface_downward_eastward_stress
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	N m-2

TAUY_mm_uo

	Long Name:	TAUY: Y_WINDSTRESS N/M2 A
	Standard Name:	surface_downward_northward_stress
	Processing:	monthly_mean_specified_vertical_coord_(ocean)
	Units:	N m-2
WM	E_mm_uo	
	Long Name:	WME: WIND MIXING ENERGY FLUX W/M2 A
	Standard Name:	wind_mixing_energy_flux_into_ocean
	Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
	Units:	W m-2

SOL_mm_uo

Long Name:	SOL: PEN.SOLAR*LF INTO OCEAN W/M2 A
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

HTNpenhtflxocn_mm_uo

Long Name:	HTN: NONPEN.HT.FLX*LF INTO OCN W/M2 A
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	W m-2

PLE_mm_uo

	Long Name:	PLE: PRECIP-EVAP INTO OCEAN KG/M2/S A
	Standard Name:	none
	Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
	Units:	kg m-2 s-1
outfl	ow_mm_uo	
5	Long Name:	RIVER OUTFLOW INTO OCEAN KG/M2/S A
	Standard Name:	water_flux_into_ocean_from_rivers
	Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
	Units:	kg m-2 s-1
snow	fall_mm_uo	
-	Long Name:	SNOWFALL INTO OCN/ONTO ICE KG/M2/S A
	Standard Name:	snowfall_amount
	Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
	Units:	kg m-2 s-1
sublim mm uo		
	Long Name:	SUBLIMATION FROM SEAICE KG/M2/S A
	Standard Name:	none

anomSaltFlux_mm_mm_uo

Long Name:	P-E FLUX CORRECTION KG/M2/S A
Standard Name:	none
Processing:	monthly_mean_unspecified_vertical_coord_(ocean)
Units:	kg m-2 s-1

A1.3 Sediments

tmonthm50

	Long Name:	Number of with temperature less than -50C
	Units:	number_months
tmon	thm30	
	Long Name:	Number of with temperature less than -30C
	Units:	number_months
tmon	thm20	
	Long Name:	Number of with temperature less than -20C
	Units:	number_months
tmon	thm10	
	Long Name:	Number of with temperature less than -10C
	Units:	number_months
tmon	thm05	
	Long Name:	Number of with temperature less than $-5C$
	Units:	number_months
tmon	thp00	
	Long Name:	Number of with temperature less than 0C
	Units:	number_months

tmonthp05

Long Name:	Number of with temperature less than 5C
Units:	number_months

tmonthp10

Long Name:	Number of with temperature less than 10C
Units:	number_months

tmonthp20

Long Name:	Number of with temperature less than 20C
Units:	number_months

tmonthp25

Long Name:	Number of with temperature less than 25C
Units:	number_months

tmonthp30

Long Name:	Number of with temperature less than 30C
Units:	number_months

pmonth10

Long Name:	Number of with precip. less than 10mm
Units:	number_months

pmonth20

Long Name:	Number of with precip. less than 20mm
Units:	number_months

pmonth30

Long Name:	Number of with precip. less than 30mm
Units:	number_months

pmonth40

Long Name:	Number of with precip. less than 40mm
Units:	number_months

pmonth60

Long Name:	Number of with precip. less than 60mm
Units:	number_months

pmonthe010

Long Name:	Number of with precip. exceeding 10mm
Units:	number_months

pmonthe020

Long Name:	Number of with precip. exceeding 20mm
Units:	number_months

pmonthe030

Long Name:	Number of with precip. exceeding 30mm
Units:	number_months

pmonthe040

Long Name:	Number of with precip. exceeding 40mm
Units:	number_months

pmonthe060

Long Name:	Number of with precip. exceeding 60mm
Units:	number_months

pmonthe080

Long Name:	Number of with precip. exceeding 80mm
Units:	number_months

pmonthe100

Long Name:	Number of with precip. exceeding 100mm
Units:	number_months

pmonthe120

Long Name:	Number of with precip. exceeding 120mm
Units:	number_months

precipsd

	Long Name:	Standard deviation of monthly mean precipitation
	Units:	mmdays-1
prati	osd	
	Long Name:	Stan.dev.of monthly mean precip./abs(precip.)
	Units:	non-dimensional
pminusemonth		
	Long Name:	Number of with P-E>0
	Units:	number_months

coal

Long Name:	Coal distribution based on precip. only
Units:	0-1

vertisola

Long Name:	Vertisol distribution based on monthly prec. 40.0
Units:	0-1

vertisolb

Long Name:	Vertisol distribution based on monthly prec. 60.0
Units:	0-1

vertisolc

Long Name:	Vertisol distribution based on monthly prec. 80.0
Units:	0-1

vertisold

Long Name:	Vertisol distribution based on std dev.	
Units:	0-1	

calcretea

Long Name:	Calcrete distribution based on prec. and monthly temp
Units:	0-1

calcreteb

Long Name:	Calcret distribution based on prec. and MAT temp
Units:	0-1

lateritea

Long Name:	Laterite distribution P-E>0 8 month, T>20 6mon
Units:	0-1

lateriteb

Long Name:	Laterite distribution P-E>0 8 month, T>25 6mon
Units:	0-1

lateritec

Long Name:	Laterite distribution (P-E>0 11 mon, T>25 8mon)
Units:	0-1

laterited

Long Name:	Laterite distribution (P-E>0 6 mon, T>23 8mon)
Units:	0-1

lateritee

Long Name:	Laterite distribution (P-E>0 9 mon, T>23 8mon)
Units:	0-1

bauxitea

Long Name:	Bauxite Distribution based on MAT>22 and P>1200
Units:	0-1

bauxiteb

Long Name:	Bauxite Distr MAT>22, P>1200, dry 6mon<60
Units:	0-1

bauxitec

Long Name:	Bauxite Distr MAT>22, P>1200< dry3mon<60
Units:	0-1

sandseas

Long Name:	Sand seas
Units:	0-1

егара

Long Name:	Evaporite distribution (method a)
Units:	0-1

evapb

Long Name:	Evaporite distribution (method b)
Units:	0-1

coral

Long Name:	Coral reefs
Units:	0-1

perma

Long Name:	Continuous Permafrost (based on 1m Tsoil)
Units:	0-1

permb

Long Name:	Continuous Permafrost (based on 0.1m Tsoil)
Units:	0-1

permc

Long Name:	Continuous Permafrost (based on Tsurf)
Units:	0-1

permd

Long Name:	Continous Permafrost (based on T2m)
Units:	0-1

dperma

Long Name:	Discontinous Permafrost (based on 1m Tsoil)
Units:	0-1

dpermb

Long Name:	Discontinous Permafrost (based on 0.1 Tsoil)
Units:	0-1

dpermc

Long Name:	Discontinous Permafrost (basedo n Tsurf)
Units:	0-1

dpermd

Long Name:	Discontinous Permafrost (based on T2m)
Units:	0-1

growseas

0		
	Long Name:	Growing Season Map (in months)
	Units:	0-1
peat		
I	Long Name:	Peat Prediction Map (in percentage)
	Units:	0-1
tmon	thm50_cor	
	Long Name:	Number of months with temperature less than -50C (Alt Cor)
	Units:	number_months
tmonthm30_cor		
	Long Name:	Number of months with temperature less than -30C (Alt Cor)
	Units:	number_months
tmon	thm20_cor	
	Long Name:	Number of months with temperature less than -20C (Alt Cor)
	Units:	number_months
tmon	thm10_cor	
	Long Name:	Number of months with temperature less than -10C (Alt Cor)
	Units:	number_months

tmonthm05_cor

Long Name:	Number of months with temperature less than -5C (Alt Cor)
Units:	number_months

tmonthp00_cor

Long Name:	Number of months with temperature less than 0C (Alt Cor)
Units:	number_months

tmonthp05_cor

Long Name:	Number of months with temperature less than 5C (Alt Cor)
Units:	number_months

tmonthp10_cor

Long Name:	Number of months with temperature less than 10C (Alt Cor)
Units:	number_months

tmonthp20_cor

Long Name:	Number of months with temperature less than 20C (Alt Cor)
Units:	number months

tmonthp25_cor

Long Name:	Number of months with temperature less than 25C (Alt Cor)
Units:	number_months

tmonthp30_cor

	1 —		
	Long Name:	Number of months with temperature less than 30C (Alt Cor)	
	Units:	number_months	
coal_	_cor		
	Long Name:	Coal distribution based on precip. only (Alt Cor)	
	Units:	0-1	
verti	sola_cor		
	Long Name:	Vertisol distribution based on monthly prec. 40.0 (Alt Cor)	
	Units:	0-1	
perti	vertisolb_cor		
	Long Name:	Vertisol distribution based on monthly prec. 60.0 (Alt Cor)	
	Units:	0-1	
pertisolc_cor			
	Long Name:	Vertisol distribution based on monthly prec. 80.0 (Alt Cor)	
	Units:	0-1	
vertisold_cor			
	Long Name:	Vertisol distribution based on std dev. (Alt Cor)	
	Units:	0-1	

calcretea_cor

Long Name:	Calcrete distribution based on precip. and monthly temp (Alt Cor)	
Units:	0-1	
calcreteb_cor		
Long Name:	Calcrete distribution based on precip. and MAT temp (Alt Cor)	
Units:	0-1	
lateritea_cor		
Long Name:	Laterite distribution P-E>0 8 month, T>20 6 mon (Alt Cor)	
Units:	0-1	
lateriteb_cor		
Long Name:	Laterite distribution P-E>0 8 month, T>25 6 mon (Alt Cor)	
Units::	0-1	
lateritec_cor		
Long Name:	Laterite distribution (P-E>0 11 month, T>25 8 mon) (Alt Cor)	
Units:	0-1	
laterited_cor		
Long Name:	Laterite distribution (P-E>0 6 month, T>23 8 mon) (Alt Cor)	
Units::	0-1	

lateritee_cor

Long Name:	Laterite distribution (P-E>0 9 month, T>23 8 mon) (Alt Cor)	
Units:	0-1	
bauxitea_cor		
Long Name:	Bauxite Distribution based on MAT >22 and P> 1200 (Alt Cor)	
Units:	0-1	
bauxiteb_cor		
Long Name:	Bauxite Distr MAT >22, P> 1200, dry 6 mon <60 (Alt Cor)	
Units:	0-1	
bauxitec_cor		
Long Name:	Bauxite Distr MAT >22, P> 1200, dry 3 mon <60 (Alt Cor)	
Units:	0-1	
sandseas_cor		
Long Name:	Sand seas (Alt Cor)	
Units:	0-1	
evapa_cor		
Long Name:	Evaporite distribution (method a) (Alt Cor)	
Units::	0-1	

evapb_cor

Long Name:	Evaporite distribution (method b) (Alt Cor)
Units:	0-1
coral_cor	
Long Name:	Coral reefs (Alt Cor)
Units:	0-1
perma_cor	
Long Name:	Continuous Permafrost (based on 1m Tsoil) (Alt Cor)
Units:	0-1
permb_cor	
Long Name:	Continuous Permafrost (based on 0.1m Tsoil) (Alt Cor)
Units:	0-1
permc_cor	
Long Name:	Continuous Permafrost (based onTsurf) (Alt Cor)
Units:	0-1
permd_cor	
Long Name:	Continuous Permafrost (based on T2m) (Alt Cor)

Units:

0-1

dperma_cor

Long Name:	Discontinuous Permafrost (based on 1m Tsoil) (Alt Cor)
Units:	0-1

dpermb_cor

Long Name:	Discontinuous Permafrost (based on 0.1m Tsoil) (Alt Cor)
Units:	0-1

dpermc_cor

Long Name:	Discontinuous Permafrost (based on Tsurf) (Alt Cor)
Units:	0-1

dpermd_cor

Long Name:	Discontinuous Permafrost (based on T2m) (Alt Cor)
Units:	0-1

growseas_cor

Long Name::	Growing Season Map (in months) (Alt Cor)
Units:	0-1

peat_cor

Long Name:	Peat Prediction Map (in percentage) (Alt Cor)
Units:	0-1

wchillcare

Long Name:	Wind Chill (Care Rating)
Units:	non-dim

apptemp

Long Name:	Apparent Temp (in C)
Units:	С

apptempcare

Long Name:	Apparent Temp (Care Rating)
Units:	non-dim

wchill_cor

Long Name:	Wind Chill (in C) (Alt Cor)
Units:	С

wchillcare_cor

Long Name:	Wind Chill (Care Rating) (Alt Cor)
Units:	non-dim

apptemp_cor

Long Name:	Apparent Temp (in C) (Alt Cor)
Units:	С

apptempcare_cor

Long Name:	Apparent Temp (Care Rating) (Alt Cor)	
Units:	non-dim	
holdbio		
Long Name:	Holdridge Biotemperature	
Units:	C	
precipann		
Long Name:	Mean Annual Precipitation	
Units:	mm	
holdridge		
Long Name:	Modified Holdridges Life Zones based AHS scheme	
Units:	non-dim	
growseasmon		
Long Name:	Growing Season Degree Mon (Kutz and Zieg)	
Units:	non-dim	
waltert10		
Long Name:	Walter Climate Month T>10 (from Kutz and Zieg)	

Units:

non-dim

walterp40

	Long Name:	Walter Climate Month P>40 (from Kutz and Zieg)
	Units:	non-dim
walter	rwet	
	Long Name:	Water Climate West Winter (from Kutz and Zieg)
	Units:	non-dim
walter	rdry	
	Long Name:	Walter Climate Dry Summer (from Kutz and Zieg)
	Units:	non-dim
walter	rmed	
	Long Name:	Walter Climate Med Climate (from Kutz and Zieg)
	Units:	non-dim
regior	ngsdm1	
	Long Name:	Region changed by GSDM crit1 (from Kutz and Zieg)
	Units:	non-dim
regior	ngsdm2	
	Long Name:	Region changed by GSDM crit2 (from Kutz and Zieg)
	Units:	non-dim

walterbiomes

Long Name:	Walter Climate and Biomes (from Kutz and Zieg)
Units:	non-dim
holdbio_cor	
Long Name:	Holdridge Biotemperature (Alt Cor)
Units:	C
precipann_cor	
Long Name:	Annual Mean Precipitation (Alt Cor)
Units:	mm
holdridge_cor	
Long Name:	Modified Holdridges Life Zones based AHS scheme (Alt Cor)
Units:	non-dim
growseasmon_cor	
Long Name:	Growing Season Degree Month (from Kutz and Zieg) (Alt Cor)
Units:	non-dim
waltert10_cor	
Long Name:	Walter Climate Month T>10 (from Kutz and Zieg) (Alt Cor)

Units: non-dim

walterp40_cor

watterp to_cor	
Long Name:	Walter Climate Month P>40 (from Kutz and Zieg) (Alt Cor)
Units:	non-dim
walterwet_cor	
Long Name:	Walter Climate Wet Winter (from Kutz and Zieg) (Alt Cor)
Units:	non-dim
walterdry_cor	
Long Name:	Walter Climate Dry Summer (from Kutz and Zieg) (Alt Cor)
Units:	non-dim
waltermed_cor	
Long Name:	Walter Climate Med Climate (from Kutz and Zieg) (Alt Cor)
Units:	non-dim
regiongsdm1_cor	
Long Name:	Region changed by GSDM crit1 (from Kutz and Zieg) (Alt Cor)
Units:	non-dim
regiongsdm2_cor	
Long Name:	Region changed by GSDM crit2 (from Kutz and Zieg) (Alt Cor)
Units:	non-dim

walterbiomes_cor

wanter	Diomics_cor	
	Long Name:	Walter Climate and Biomes (from Kutz and Kieg) (Alt Cor)
	Units:	non-dim
ts_cor		
	Long Name:	2m Temperatures (orog corrected)
	Units:	non-dim
albedo	o_noice	
	Long Name:	Snow Free Surface Albedo (non-ice)
	Units:	0-1
albedo_ice		
	Long Name:	Snow Free Surface Albedo (land-ice)
	Units:	0-1
fnoice		
	Long Name:	Regions: of globe with No Permanent Ice
	Units:	0-1
fice		
	Long Name:	Regions:of globe with Permanent Ice

Units:

0-1

jant

-		
	Long Name:	January 2 metre Temperatures (in C)
	Units:	С
jult		
,	Long Name:	July 2 metre Temperatures (in C)
	Units:	C
mat		
	Long Name:	Mean Annual 2 metre Temperatures (in C)
	Units:	С
jjat		
<u>)</u>)***	Long Name:	June to Aug mean 2 metre Temperatures (in C)
	Units:	С
wwm	ncmm	
	Long Name:	WWM-CCM mean 2 metre Temperature (in C)
		(equivalent to Mean Annual Range in Temperature (MART)
	Units:	С
when	cmm	
WIIEII		
	Long Name:	When coldest month (1=Jan 12=Dec)
	Units:	months

whenwmm

	Long Name:	When warmest month (1=Jan 12=Dec)
	Units:	С
csm		
	Long Name:	Cold seas mean 2 metre Temperatures (in C)
	Units:	С
wsm		
	Long Name:	Warm seas mean 2 metre Temperatures (in C)
	Units:	С
wsma	rsm	
W SIIIC	Long Name:	WSM-CSM mean 2 metre Temperatures (in C)
	Units:	С
when	CSM Long Name:	When coldest season (1=DJF 4=SON)
	Units:	seas
when	wsm	
	Long Name:	When warmest season (1=DJF 4=SON)
	Units:	seas

drymon

Long Name:	Dry month mean (in mm/day)
Units:	mm/day
wetmon	
Long Name:	Wet month mean (in mm/day)
Units:	mm/day
wetdrymon	
Long Name:	WETMON-DRYMON (in mm/day)
Units:	mm/day
whendrymon	
Long Name:	When driest month (1=Jan 12=Dec)
Units:	months
whenwetmon	
Long Name:	When wettest month (1=Jan 12=Dec)
Units:	months
drysea	
Long Name:	Dry seas mean (in mm/day)
Units:	mm/day

wetsea

	Long Name:	Wet seas mean (in mm/day)
	Units:	mm/day
wetdr	ysea	
	Long Name:	WETSEA-DRYSEA mean (in mm/day)
	Units:	mm/day
when	drysea	
	Long Name:	When driest season (1=DJF 4=SON)
	Units:	seas
when	wetsea	
	Long Name:	When wettest season (1=DJF 4=SON)
	Units:	seas
тар		
	Long Name:	Mean Annual Precipitation (in mm/year)

janp

Units:

Long Name:	January Mean Precipitation (in mm/month)
Units:	mm/month

mm/year

julp

Long Name:	July Mean Precipitation (in mm/month)
Units:	mm/month

djfp

Long Name:	Dec to Feb Mean Precipitation (in mm/3months)
Units:	mm/3months

jjap

Long Name:	June to August Mean Precipitation (in mm/3months)
Units:	mm/3months

pregro

Long Name:	Precip when temp > $\pm 10 C$ (in mm)
Units:	mm

premean

Long Name:	Mean Precip when temp > +10 C (in mm/month)
Units:	mm/month

lengro

Long Name:	Length of growing season (temp>+10C) (in months)
Units:	months

predry

Long Name:	Precip during 3 consecutive dry months (in mm)
Units:	mm
prewet	
Long Name:	Precip during 3 consecutive wet months (in mm)
Units:	mm
whenwettest3	
Long Name:	When wettest consecutive 3 months (mid-point months 1=Jan etc)
Units:	months
whendriest3	
Long Name:	When driest consecutive 3 months 9mid-point months 1=Jan etc)
Units:	months
jant_cor	
Long Name:	January 2 metre Temperatures (in C)(Alt Cor)
Units:	C
jult_cor	
Long Name:	July 2 metre Temperatures (in C)(Alt Cor)
Units:	C

mat_cor

Long Name:	Mean Annual 2 metre Temperatures (in C)(Alt Cor)
Units:	C
djft_cor	

Long Name:	Dec to Feb mean 2 metre Temperatures (in C) (Alt Cor)
Units:	С

jjat_cor

Long Name:	June to August mean 2 metre Temperatures (in C) (Alt Cor)
Units:	С

cmm_cor

Long Name:	Cold month mean 2 metre Temperatures (in C) (Alt Cor)
Units:	С

wmm_cor

Long Name:	Warm month mean 2 metre Temperatures (in C) (Alt Cor)
Units:	С

wmmcmm_cor

Long Name:	WMM-CMM mean 2 metre Temperatures (in C)(Alt Cor)
Units:	С

whencmm_cor	
Long Name:	When coldest month (1=Jan 12=Dec) (Alt Cor)
Units:	months
whenwmm_cor	
Long Name:	When warmest month (1=Jan 12=Dec) (Alt Cor)
Units:	months
csm_cor	
Long Name:	Cold seas mean 2 metre Temperatures (in C) (Alt Cor)
Units:	C
wsm_cor	
Long Name:	Warm seas mean 2 metre Temperatures (in C) (Alt Cor)
Units:	C
wsmcsm_cor	
Long Name:	WSM-CSM mean 2 metre Temperatures (in C)(Alt Cor)
Units:	C
whencsm_cor	
Long Name:	When coldest season (1=DJF 4=SON) (Alt Cor)
Units:	seas

whenwsm_cor

Long Name:	When warmest month (1=Jan 12=Dec) (Alt Cor)
Units:	seas
pregro_cor	
Long Name:	Mean Precip when temp >+10C (in mm/month) (Alt Cor)
Units:	mm/month
premean_cor	
Long Name:	Mean Precip when temp $>$ +10C (in mm/month) (Alt Cor)
Units:	mm/month
lengro_cor	
Long Name:	Length of growing season (temp>+10C) (in months) (Alt Cor)
Units:	months
predry_cor	
Long Name:	Precip during 3 consecutive dry months (in mm) (Alt Cor)
Units:	mm
prewet_cor	
Long Name:	Precip during 3 consecutive wet months (in mm) (Alt Cor)
Units:	mm

pann

Long Name:	Precipitation (annual mean) (in mm/day)
Units:	mm/day

evapann

Long Name:	Evaporation (annual mean) (in mm/day)
Units:	mm/day

pminuseann

Long Name:	Precipitation-Evaporation (in mm/day)
Units:	mm/day

pminuseann1

Long Name:	Precipitation-Evaporation (in cm/year)
Units:	cm/year

salinity

Long Name:	Sea-Surface Salinity (in %%)
Units:	psu

delta180

Long Name:	Delta O18 smow (%%) surface waters
Units:	per-mil

detla18o_pacific

Long Name:	Delta O18 smow (%%) surface waters (Pacific Calib)
Units:	per-mil

delta18o_salinity

Long Name:	Delta O18 smow (%%) surface waters (Salinity Calib)
Units:	per-mil

koppenbasic

Long Name:	Basic Koppen Classification
Units:	non-dim

koppenfull

Long Name:	Detailed Koppen Classification
Units:	non-dim

albedop

Long Name:	Planetary Albedo
Units:	0-1

netsolar

Long Name:	Net Solar TAO Radiation
Units:	WM-2

albedos

Long Name:	Surface Albedo
Units:	0-1

netsurfsolar

Long Name:	Net Surface Solar Radiation
Units:	Wm-2

nettotaltoa

Long Name:	Net TOA Radiation
Units:	Wm-2

netsurf

Long Name:	Net Surface Energy Balance
Units:	Wm-2

netsurfrad

Long Name:	Net Surface Radiation
Units:	Wm-2

netsolaratmos

Long Name:	Net Solar Radiation (absorbed in atmosphere)
Units:	Wm-2

Atlas of Earth Systems Modelling Jurassic Palaeoclimate Model Results

netlongwaveatmos

Long Name:	Net Longwave Radiation (absorbed in atmosphere)
Units:	Wm-2

netradiationatmos

	Long Name:	Net Radiative Balance (absorbed in atmosphere)
	Units:	Wm-2
sgp		
01	Long Name:	sgp parameter
	Units:	non-dim
enth		
	Long Name:	Moist Enthalpy (in J/Kg)
	Units:	J/kg
enthsurf		
	Long Name:	Moist Enthalpy at surface (in J/Kg)
	Units:	J/kg
enthmsl		

Long Name:	Moist Enthalpy at msl (in J/kg)
Units:	J/kg

Atlas of Earth Systems Modelling Jurassic Palaeoclimate Model Results

enth1000

	Long Name:	Moist Enthalpy at 1000hPa (in J/kg)
	Units:	J/kg
mse		
	Long Name:	Moist Static Energy (in J/kg)
	Units:	J/kg
mses	urf	
	Long Name:	Moist Static Energy at surface (in J/kg)
	Units:	J/kg
mser	nsl	
	Long Name:	Moist Static Energy at msl (in J/kg)
	Units:	J/kg
mse	1000	
	I ona Name	Moist Static Energy at 1000 hPa (in I/kg)

Long Name: Moist Static Energy at 1000hPa (in J/kg) Units: J/kg

A1.4 Surface/Vegetation

PhenLeafturnPFT_snp_srf

Long Name:	PHENOLOGICAL LEAF TURNOVER RATE PFTS
Standard Name:	none
Processing:	snapshot_at_surface
Units:	s-1

AcLeafTurnPFT_snp_srf

Long Name:	MEAN LEAF TRNVR RATE PFTS FOR PHENOL
Standard Name:	none
Processing:	snapshot_at_surface
Units:	s-1

LAI_PFT_snp_srf

Long Name:	LEAF AREA INDEX PFTS AFTER PHENOLOGY
Standard Name:	leaf_area_index
Processing:	snapshot_at_surface
Units:	-

canopyCond_mm_srf

Long Name:	CANOPY CONDUCTANCE M/S
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	-

GPP_mm_srf

Long Name:	GROSS PRIMARY PRODUCTIVITY KG C/M2/S
Standard Name:	gross_primary_productivity_of_carbon
Processing:	monthly_mean_at_surface
Units:	-

NPP_mm_srf

Long Name:	NET PRIMARY PRODUCTIVITY KG C/M2/S
Standard Name:	net_primary_productivity_of_carbon
Processing:	monthly_mean_at_surface
Units:	-

plantResp_mm_surf

Long Name:	PLANT RESPIRATION KG/M2/S
Standard Name:	plant_respiration_carbon_flux
Processing:	monthly_mean_at_surface
Units:	-

canopyHeight_mm_srf

Long Name:	CANOPY HEIGHT OF VEGETATED FRACTION
Standard Name:	canopy_height
Processing:	monthly_mean_at_surface
Units:	m

canopyEvap_T_mm_srf

Long Name:	CANOPY EVAPORATION ON NON-ICE TILES
Standard Name:	water_evaporation_flux_from_canopy_where_land
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

evapoTrans_mm_srf

Long Name:	TRANSPIRATION+SOIL EVP NON-ICE TILES
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

GPP_PFT_mm_srf

Long Name:	GROSS PRIMARY PRODUCTIVITY ON PFRS
Standard Name:	gross_primary_productivity_of_carbon
Processing:	monthly_mean_at_surface
Units:	kg C m-2 s-1

sensHflx_T_mm_srf

Long Name:	SURFACE SENSIBLE HEAT FLUX ON TILES
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	W m-2

NPP_PFT_mm_srf

Long Name:	NET PRIMARY PRODUCTIVITY ON PFTS
Standard Name:	net_primary_productivity_of_carbon
Processing:	monthly_mean_at_surface
Units:	kg C m-2 s-1

plantResp_PFT_mm_srf

Long Name:	PLANT RESPIRATION ON PFTS KG C/M2/S
Standard Name:	plant_respiration_carbon_flux
Processing:	monthly_mean_at_surface
Units:	kg C m-2 s-1

soilResp_mm_srf

Long Name:	SOIL RESPIRATION KG C/M2/S
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	kg C m-2 s-1

$BulkRich_mm_srf$

Long Name:	BULK RICHARDSON NUMBER ON TILES
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	-

snowCover_mm_srf

Long Name:	FRACTIONAL SNOW COVER
Standard Name:	surface_snow_area_fraction
Processing:	monthly_mean_at_surface
Units:	0-1

soilEvap_mm_srf

Long Name:	EVAP FROM SOIL SURF : RATE KG/M2/S
Standard Name:	water_evaporation_flux
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

canopyEvap_mm_can

Long Name:	EVAP FROM CANOPY : RATE KG/M2/S
Standard Name:	water_evaporation_flux_from_canopy_where_land
Processing:	monthly_mean_at_canopy_height
Units:	kg m-2 s-1

srfSublim_mm_srf

Long Name:	SUBLIM.SURFACE (GBM) : RATE KG/M2/S
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

potEvap_mm_srf

Long Name:	POTENTIAL EVAPORATION RATE KG/M2/S
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	kg m-2 s-1

fractPFTssnowadj_mm_srf

Long Name:	SNOW-ADJUSTED TILE FRACTIONS
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	-

temp_mm_srf

Long Name:	SOIL CARBON CONTENT (B.LAYER) KGC/M2
Standard Name:	water_evaporation_flux
Processing:	monthly_mean_at_surface
Units:	kg C m-2

waterContent_T_mm_srf

Long Name:	CANOPY WATER ON NON-ICE TILES KG/M2
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	kg m-2

waterCapac_T_mm_srf

Long Name:	CANOPY CAPACITY NON_ICE TILES KG/M2
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	-

snowtemp_mm_srf

Long Name:	SNOW TEMPERATURE K
Standard Name:	water_evaporation_flux
Processing:	monthly_mean_at_surface
Units:	Κ

roughnessLength_T_mm_srf

Long Name::	ROUGHNESS LENGTH ON TILES M
Standard Name:	surface_roughness_length
Processing:	monthly_mean_at_surface
Units:	m

leafTurnPFT_mm_srf

Long Name:	LEAF TURNOVER RATE ON PFTS
Standard Name:	none
Processing:	monthly_mean_at_surface
Units:	360days

potEvapTiles_mm_srf

Long Name:	POTENTIAL EVAP RATE ON TILES KG/M2/S
Standard Name:	not_found
Processing::	monthly_mean_at_surface
Units:	kg m-2 s-1

A1.5 Storms

t2m_totalold

Long Name:	Surface Air Temperature: total transients (old style)
Units:	K**2
t2m_lowold	
Long Name:	Surface Air Temperature: low pass transients (old style)
Units:	K**2
t2m_highold	
Long Name:	Surface Air Temperature: high pass transients (old style)
Units::	K**2
t2m_totalnew	
Long Name:	Surface Air Temperature: total transients (new style)
Units:	K**2
t2m_lownew	
Long Name:	Surface Air Temperature: low pass transients (new style)
Units:	K**2
t2m_highnew	
Long Name:	Surface Air Temperature: high pass transients (new style)
Units:	K**2

tsurf_totalold

Long Name:	Surface Temperature: total transients (old style)
Units:	K**2

tsurf_lowold

Long Name:	Surface Temperature: low pass transients (old style)
Units:	K**2

tsurf_highold

Long Name:	Surface Temperature: high pass transients (old style)
Units:	K**2

tsurf_totalnew

Long Name:	Surface Temperature: total transients (new style)
Units:	K**2

tsurf_lownew

Long Name:	Surface Temperature: low pass transients (new style)
Units:	K**2

tsurf_highnew

Long Name:	Surface Temperature: high pass transients (new style)
Units:	K**2

precip_totalold

Long Name:	Precipitation: total transients (old style)
Units:	mmday-1**2

precip_lowold

Long Name:	Precipitation: low pass transients (old style)
Units:	mmday-1**2

precip_highold

Long Name:	Precipitation: high pass transients (old style)
Units:	mmday-1**2

precip_totalnew

Long Name:	Precipitation: total transients (new style)
Units:	mmday-1**2

precip_lownew

Long Name:	Precipitation: low pass transients (new style)
Units:	mmday-1**2

precip_highnew

Long Name:	Precipitation: high pass transients (new style)
Units:	mmday-1**2

mslp_totalold

Long Name:	MSLP Pressure: total transients (old style)
Units:	Pa**2
mslp_lowold	
Long Name:	MSLP Pressure: low pass transients (old style)
Units:	Pa**2
mslp_highold	
Long Name:	MSLP Pressure: high pass transients (old style)
Units:	Pa**2
mslp_totalnew	
Long Name:	MSLP Pressure: total transients (new style)
Units:	Pa**2
mslp_lownew	
Long Name:	MSLP Pressure: low pass transients (new style)
Units::	Pa**2
mslp_highnew	
Long Name:	MSLP Pressure: high pass transients (new style)
Units:	Pa**2

pstar_totalold

	Long Name:	Surface Pressure: total transients (old style)
	Units:	Pa**2
pstar	_lowold	
	Long Name:	Surface Pressure: low pass transients (old style)
	Units:	Pa**2
pstar	_highold	
	Long Name:	Surface Pressure: high pass transients (old style)
	Units:	Pa**2
pstar	_totalnew	
	Long Name:	Surface Pressure: total transients (new style)
	Units:	Pa**2
pstar	_lownew	
	Long Name:	Surface Pressure: low pass transients (new style)
	Units:	Pa**2
pstar	_highnew	
	Long Name:	Surface Pressure: high pass transients (new style)
	Units:	Pa**2

sm_totalold

Long Name:	Soil Moisture: total transients (old style)
Units:	kgm-2**2
sm_lowold	
Long Name:	Soil Moisture: low pass transients (old style)
Units:	kgm-2**2
sm_highold	
Long Name:	Soil Moisture: high pass transients (old style)
Units:	kgm-2**2
sm_totalnew	
Long Name:	Soil Moisture: total transients (new style)
Units:	kgm-2**2
sm_lownew	
Long Name:	Soil Moisture: low pass transients (new style)
Units:	kgm-2**2
sm_highnew	
Long Name:	Soil Moisture: high pass transients (new style)
Units:	kgm-2**2

theta_btmlev_totalold

Long Name:	Surface Theta: total transients (old style)
Units:	K**2

theta_btmlev_lowold

Long Name:	Surface Theta: low pass transients (old style)
Units:	K**2

theta_btmlev_highold

Long Name:	Surface Theta: high pass transients (old style)
Units:	K**2

theta_btmlev_totalnew

Long Name:	Surface Theta: total transients (new style)
Units:	K**2

theta_btmlev_lownew

Long Name:	Surface Theta: low pass transients (new style)
Units:	K**2

theta_btmlev_highnew

Long Name:	Surface Theta: high pass transients (new style)
Units:	K**2

q2m_totalold

1 -	-	
	Long Name:	Near Surface Humidity: total transients (old style)
	Units:	kgkg-1**2
q2m_	_lowold	
	Long Name:	Near Surface Humidity: low pass transients (old style)
	Units:	kgkg-1**2
q2m_	_highold	
	Long Name:	Near Surface Humidity: high pass transients (old style)
	Units:	kgkg-1**2
q2m_	_totalnew	
	Long Name:	Near Surface Humidity: total transients (new style)
	Units:	kgkg-1**2
q2m_	_lownew	
	Long Name:	Near Surface Humidity: low pass transients (new style)
	Units:	kgkg-1**2

q2m_highnew

Long Name:	Near Surface Humidity: high pass transients (new style)
Units:	kgkg-1**2

hxh_totalold

Long Name:	Height variance: total transients (old style)
Units:	m**2

hxh_lowold

Long Name:	Height variance: low pass transients (old style)
Units:	m**2

hxh_highold

Long Name:	Height variance: high pass transients (old style)
Units:	m**2

hxh_totalnew

Long Name:	Height variance: total transients (new style)
Units:	m**2

hxh_lownew

Long Name:	Height variance: low pass transients (new style)
Units:	m**2

hxh_highnew

Long Name:	Height variance: high pass transients (new style)
Units:	m**2

uxu_totalold

Long Name:	Zonal Wind Variance: total transients (old style)	
Units:	ms-1**2	
uxu_lowold		
Long Name:	Zonal Wind Variance: low pass transients (old style)	
Units:	ms-1**2	
uxu_highold		
Long Name:	Zonal Wind Variance: high pass transients (old style)	
Units:	ms-1**2	
uxu_totalnew		
Long Name:	Zonal Wind Variance: total transients (new style)	
Units:	ms-1**2	

uxu_lownew

Long Name:	Zonal Wind Variance: low pass transients (new style)
Units:	ms-1**2

uxu_highnew

Long Name:	Zonal Wind Variance: high pass transients (new style)
Units:	ms-1**2

vxv_totalold

Long Name:	Meridional Wind Variance: total transients (old style)
Units:	ms-1**2
vxv_lowold	
Long Name:	Meridional Wind Variance: low pass transients (old style)
Units:	ms-1**2
vxv_highold	
Long Name:	Meridional Wind Variance: high pass transients (old style)
Units:	ms-1**2
vxv_totalnew	
Long Name:	Meridional Wind Variance: total transients (new style)
Units:	ms-1**2
vxv_lownew	
Long Name:	Meridional Wind Variance: low pass transients (new style)
Units:	ms-1**2
vxv_highnew	
Long Name:	Meridional Wind Variance: high pass transients (new style)
Units:	ms-1**2

wxw_totalold

	Long Name:	Omega Variance: total transients (old style)
	Units:	Pas-1**2
wxw_	_lowold	
	Long Name:	Omega Variance: low pass transients (old style)
	Units:	Pas-1**2
wxw_	_highold	
	Long Name:	Omega Variance: high pass transients (old style)
	Units:	Pas-1**2
wxw_	_totalnew	
	Long Name:	Omega Variance: total transients (new style)
	Units:	Pas-1**2
wxw_	_lownew	
	Long Name:	Omega Variance: low pass transients (new style)
	Units:	Pas-1**2
wxw_	_highnew	
	Long Name:	Omega Variance: high pass transients (new style)
	Units:	Pas-1**2

qxq_totalold

Long Name:	Upper Air Humidity Variance: total transients (old style)
Units:	kgkg-1**2

qxq_lowold

Long Name:	Upper Air Humidity Variance: low pass transients (old style)
Units:	kgkg-1**2

qxq_highold

Long Name:	Upper Air Humidity Variance: high pass transients (old style)
Units:	kgkg-1**2

qxq_totalnew

Long Name:	Upper Air Humidity Variance: total transients (new style)
Units:	kgkg-1**2

qxq_lownew

Long Name:	Upper Air Humidity Variance: low pass transients (new style)
Units:	kgkg-1**2

qxq_highnew

Long Name:	Upper Air Humidity Variance: high pass transients (new style)
Units:	kgkg-1**2

$TxT_totalold$

La	ong Name:	Upper Air Temperature Variance: total transients (old style)
U	nits:	K**2
TxT_lo	wold	
La	ong Name:	Upper Air Temperature Variance: low pass transients (old style)
U	nits:	K**2
TxT_hi	ghold	
La	ong Name:	Upper Air Temperature Variance: high pass transients (old style)
U	nits:	K**2
TxT_to	talnew	
La	ong Name:	Upper Air Temperature Variance: total transients (new style)
U	nits:	K**2
TxT_lo	wnew	
La	ong Name:	Upper Air Temperature Variance: low pass transients (new style)
U	nits:	K**2
TxT_hi	ghnew	
La	ong Name:	Upper Air Temperature Variance: high pass transients (new style)
U	nits:	K**2

PVxPV_totalold

Long Name:	PV Variance: total transients (old style)
Units:	kgm2s-1kg-1**2

PVxPV_lowold

Long Name::	PV Variance: low pass transients (old style)
Units:	kgm2s-1kg-1**2

PVxPV_highold

Long Name:	PV Variance: high pass transients (old style)
Units:	kgm2s-1kg-1**2

PVxPV_totalnew

Long Name:	PV Variance: total transients (new style)
Units:	kgm2s-1kg-1**2

PVxPV_lownew

Long Name::	PV Variance: low pass transients (new style)
Units:	kgm2s-1kg-1**2

PVxPV_highnew

Long Name:	PV Variance: high pass transients (new style)
Units:	kgm2s-1kg-1**2

uxv_totalold

Long Name:	u x v: total transients (old style)
Units:	ms-1**2

uxv_lowold

Long Name:	u x v: low pass transients (old style)
Units:	ms-1**2

uxv_highold

Long Name:	u x v: high pass transients (old style)
Units:	ms-1**2

uxv_totalnew

Long Name:	u x v: total transients (new style)
Units:	ms-1**2

uxv_lownew

Long Name::	u x v: low pass transients (new style)
Units:	ms-1**2

uxv_highnew

Long Name:	u x v: high pass transients (new style)
Units:	ms-1**2

uxw_totalold

Long Name:	u x omega: total transients (old style)
Units:	ms-1Pas-1
uxw_lowold	
Long Name:	u x omega: low pass transients (old style)
Units:	ms-1Pas-1
uxw_highold	
Long Name:	u x omega: high pass transients (old style)
Units:	ms-1Pas-1
uxw_totalnew	
Long Name:	u x omega: total transients (new style)
Units:	ms-1Pas-1
uxw_lownew	
Long Name:	u x omega: low pass transients (new style)
Units:	ms-1Pas-1
uxw_highnew	
Long Name:	u x omega: high pass transients (new style)

Long Name:	u x omega: high pass transients (new style)
Units:	ms-1Pas-1

uxq_totalold

Long Name:	u x q: total transients (old style)
Units:	ms-1kgkg-1

uxq_lowold

Long Name:	u x q: low pass transients (old style)
Units:	ms-1kgkg-1

uxq_highold

Long Name:	u x q: high pass transients (old style)
Units:	ms-1kgkg-1

uxq_totalnew

Long Name:	u x q: total transients (new style)
Units:	ms-1kgkg-1

uxq_lownew

Long Name:	u x q: low pass transients (new style)
Units:	ms-1kgkg-1

uxq_highnew

Long Name:	u x q: high pass transients (new style)
Units:	ms-1kgkg-1

vxq_totalold

Long Name:	v x q: total transients (old style)
Units:	ms-1kgkg-1

vxq_lowold

Long Name:	v x q: low pass transients (old style)
Units:	ms-1kgkg-1

vxq_highold

Long Name:	v x q: high pass transients (old style)
Units:	ms-1kgkg-1

vxq_totalnew

Long Name:	v x q: total transients (new style)
Units:	ms-1kgkg-1

vxq_lownew

Long Name:	v x q: low pass transients (new style)
Units:	ms-1kgkg-1

vxq_highnew

Long Name:	v x q: high pass transients (new style)
Units:	ms-1kgkg-1

wxq_totalold

Long Name:	w x q: total transients (old style)
Units:	Pas-1kgkg-1

wxq_lowold

Long Name:	w x q: low pass transients (old style)
Units:	Pas-1kgkg-1

wxq_highold

Long Name:	w x q: high pass transients (old style)
Units:	Pas-1kgkg-1

wxq_totalnew

Long Name:	w x q: total transients (new style)
Units:	Pas-1kgkg-1

wxq_lownew

Long Name:	w x q: low pass transients (new style)
Units:	Pas-1kgkg-1

wxq_highnew

Long Name:	w x q: high pass transients (new style)
Units:	Pas-1kgkg-1

uxT_totalold

Long Name:	u x T: total transients (old style)
Units:	ms-1K
uxT_lowold	
Long Name:	u x T: low pass transients (old style)
Units:	ms-1K
uxT_highold	
Long Name:	u x T: high pass transients (old style)
Units:	ms-1K
uxT_totalnew	
Long Name:	u x T: total transients (new style)
Units:	ms-1K
uxT_lownew	
Long Name:	u x T: low pass transients (new style)
Units:	ms-1K
uxT_highnew	
Long Name:	u x T: high pass transients (new style)

Units: ms-1K

vxT_totalold

Long Name:	v x T: total transients (old style)
Units:	ms-1K
vxT_lowold	
Long Name:	v x T: low pass transients (old style)
Units:	ms-1K
vxT_highold	

Long Name:	v x T: high pass transients (old style)
Units:	ms-1K

vxT_totalnew

Long Name:	v x T: total transients (new style)
Units:	ms-1K

vxT_lownew

Long Name:	v x T: low pass transients (newstyle)
Units:	ms-1K

vxT_highnew

Long Name:	v x T: high pass transients (new style)
Units:	ms-1K

wxT_totalold

Long Name:	w x T: total transients (old style)
Units:	Pas-1K
wxT_lowold	
Long Name:	w x T: low pass transients (old style)
Units:	Pas-1K
wxT_highold	
Long Name:	w x T: high pass transients (old style)
Units:	Pas-1K
wxT_totalnew	
Long Name:	w x T: total transients (new style)
Units:	Pas-1K
wxT_lownew	
Long Name:	w x T: low pass transients (new style)
Units:	Pas-1K
wxT_highnew	
Long Name:	w x T: high pass transients (new style)
Units:	Pas-1K

eke_totalold

Long Name:	Eddy Kinetic Energy: total transients (old style)
Units:	ms-1**2
eke_lowold	
Long Name:	Eddy Kinetic Energy: low pass transients (old style)
Units:	ms-1**2
eke_totalnew	
Long Name:	Eddy Kinetic Energy: total transients (new style)
Units:	ms-1**2
eke_lownew	
Long Name:	Eddy Kinetic Energy: low pass transients (new style)
Units:	ms-1**2
eke_highnew	
Long Name:	Eddy Kinetic Energy: high pass transients (new style)
Units:	ms-1**2
E-vec-x_totalold	
Long Name:	E-Vector (x-comp): total transients (old style)
Units:	ms-1**2

E-vec-x_lowold

Long Name:	E-Vector (x-comp): low pass transients (old style)
Units:	ms-1**2

E-vec-x_highold

Long Name:	E-Vector (x-comp): high pass transients (old style)
Units:	ms-1**2

E-vec-x_totalnew

Long Name:	E-Vector (x-comp): total transients (new style)
Units:	ms-1**2

E-vec-x_lownew

Long Name:	E-Vector (x-comp): low pass transients (new style)
Units:	ms-1**2

E-vec-x_highnew

Long Name:	E-Vector (x-comp): high pass transients (new style)
Units:	ms-1**2

E-vec-y_totalold

Long Name:	E-Vector (y-comp): total transients (old style)
Units:	ms-1**2

E-vec-y_lowold

Long Name:	E-Vector (y-comp): low pass transients (old style)
Units:	ms-1**2

E-vec-y_highold

Long Name:	E-Vector (y-comp): high pass transients (old style)
Units:	ms-1**2

E-vec-y_totalnew

Long Name:	E-Vector (y-comp): total transients (new style)
Units:	ms-1**2

E-vec-y_lownew

Long Name:	E-Vector (y-comp): low pass transients (new style)
Units:	ms-1**2

E-vec-y_highnew

Long Name:	E-Vector (y-comp): high pass transients (new style)
Units:	ms-1**2